Диафрагма (анатомия) — Википедия
Материал из Википедии — свободной энциклопедии
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 5 ноября 2017; проверки требуют 14 правок. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 5 ноября 2017; проверки требуют 14 правок. У этого термина существуют и другие значения, см. Диафрагма.Диафра́гма (лат. diaphragma, от др.-греч. διάφραγμα перегородка) — непарная мышца, разделяющая грудную и брюшную полости, служащая для расширения лёгких. Условно её границу можно провести по нижнему краю рёбер. Образована системой поперечнополосатых мышц, которые, по-видимому, являются производными системы прямой мышцы живота. Свойственна только млекопитающим и крокодилам. Наличие диафрагмы позволяет резко интенсифицировать вентиляцию лёгких[2][3].
Диафрагма — это полукруглая структура, состоящая из мышц и фиброзной ткани, которая отделяет грудную полость от брюшной полости. Купол диафрагмы направлен вверх. Высшая поверхность купола образует дно грудной полости, а нижняя образует верх брюшной полости. Как купол, диафрагма имеет периферические вложения к структурам, которые создают брюшину и стенку груди. Мышечные волокна, сходясь от этих вложений, образуют центральное сухожилие, которое формирует гребень диафрагмы. Его (гребня) периферическая часть состоит из мышечных волокон, которые берут начало от нижнего грудного отверстия и также сходятся в центральную жилу.
Обычно верхушка правого купола диафрагмы находится на уровне четвёртого, а левого — на уровне пятого межреберного промежутка. При вдохе купола диафрагмы опускаются на 2—3 см и уплощаются.
Диафрагма пронизана рядом отверстий, позволяющих связываться структурам, которые находятся между грудной клеткой и животом. Есть три больших отверстия: аортальное, пищеводное и венозное, включающих в себя ряд других мелких отверстий. В таблице показано строение трёх главных отверстий.
Название отверстия | Уровень позвонка | Описание |
---|---|---|
Венозное отверстие | Восьмой | Венозное отверстие проходит через центральное сухожилие диафрагмы. Оно включает в себя нижнюю полую вену и несколько ветвей правого диафрагмального нерва. |
Пищеводное отверстие | Десятый | Пищеводное отверстие находится в задней части диафрагмы, немного левее от центрального сухожилия. Оно состоит из пищеварительной трубки и передних блуждающих нервов. |
Аортальное отверстие | Двенадцатый | Аортальное отверстие находится в задней части диафрагмы. Оно включает аорту, непарную вену и грудной лимфатический проток. |
В диафрагме различают поясничную, рёберную и грудинную части. Между поясничной и рёберными частями располагаются пояснично-рёберные треугольники, между рёберными и грудинной — грудинно-рёберные, эти образования являются местом возникновения диафрагмальных грыж. Поясничная часть диафрагмы (pars lumbalis diaphragmatis) начинается на передней поверхности тел поясничных позвонков. Рёберная часть (pars costalis diaphragmatis) начинается на внутренней поверхности нижних шести-семи рёбер и заканчиваются у переднего и боковых краёв сухожильного центра. Грудинная часть (pars sternalis diaphragmatis) диафрагмы самая узкая и слабая, начинается от задней поверхности мечевидного отростка грудины и заканчивается у переднего края сухожильного центра.
Таким образом, мышечные пучки мышцы начинаются на периферии, идут вверх и медиально и сходятся своими сухожилиями, образуя сухожильный центр (centrum tendineum).
Кровоснабжение диафрагмы осуществляется верхней и нижней диафрагмальными, мышечно-диафрагмальной и перикардодиафрагмальной артериями. Их сопровождают одноимённые вены.
Иннервируется диафрагма диафрагмальным нервом, ветвями блуждающего нерва, межреберными нервами и симпатическим стволом.
Функции диафрагмы делят на статическую и динамическую[4].
В динамической выделяют три отдельные функции[4]:
- респираторную (или дыхательную). В результате движений диафрагмы, обуславливающих вместе с грудными мышцами вдох и выдох, осуществляется основной объём вентиляции лёгких.
- кардио-васкулярная. При вдохе сердечная сумка и лежащая в ней самая нижняя часть верхней полой вены расширяются. В то же время понижение диафрагмы и одновременное повышение внутрибрюшного давления выжимают кровь из печени в нижнюю полую вену, что и способствует постоянному оттоку венозной крови в правое предсердие. Кроме того, оттоку крови от органов брюшной полости и притоку её к сердцу способствуют колебания внутриплеврального давления (например, присасывающее действие грудной полости при вдохе).
- моторно-пищеварительную. Диафрагма имеет большое значение для продвижения пищи по пищеводу (является жомом пищевода), а периодические движения диафрагмы вкупе с синхронными дыхательными движениями важны и для желудка.
Статическая (опорная) функция состоит в поддержании нормальных взаимоотношений между органами грудной и брюшной полостей, зависит от мышечного тонуса диафрагмы. Нарушение этой функции приводит к перемещению брюшных органов в грудную клетку.
Диафрагма является важным органом брюшного пресса. При одновременном сокращении с мышцами живота диафрагма способствует уменьшению внутрибрюшного давления. При вдохе диафрагма сокращается, растягиваясь активным действием в сторону нижних внутренних органов. При выдохе диафрагма пассивно расслабляется и подтягивается удерживающими её сухожилиями, приходя в своё спокойное состояние.
Диафрагма является главной мышцей, приводящей лифму в движение. Это своего рода «сердце» лимфосистемы. При физических нагрузках и глубоком дыхании «животом» амплитуда движения диафрагмы увеличивается и циркуляция лимфы усиливается, то есть её застой устраняется.
ru.wikipedia.org
Диафрагма объектива — Википедия
У этого термина существуют и другие значения, см. Диафрагма. Устройство револьверной диафрагмы Механизм ирисовой диафрагмыДиафра́гма объекти́ва (от греч. διάφραγμα — перегородка) в оптических приборах — разновидность апертурной диафрагмы, позволяющая регулировать относительное отверстие объектива изменением диаметра проходящих через него пучков света[1]. Такая регулировка используется для управления светопропусканием и глубиной резкости.
Диафрагма объектива представляет собой непрозрачную перегородку с круглым отверстием переменного диаметра, центр которого совпадает с оптической осью
Револьверная диафрагма представляет собой поворотный диск с набором отверстий разного диаметра и широко применялась в объективах крупноформатных камер конца XIX века. Позднее револьверная диафрагма встречалась в некоторых простейших фотоаппаратах, например «Школьник», а также в оптических приборах.
Вставная диафрагма представляет собой набор пластин с разными отверстиями, вставляющихся в прорезь оправы объектива между линзами
Ирисовая диафрагма получила наибольшее распространение в фото-, кино- и телевизионных объективах, поскольку позволяет бесступенчато регулировать относительное отверстие и имеет самую компактную конструкцию[4].
Назначение диафрагмы
Основное предназначение диафрагмы объектива — регулировка его относительного отверстия и светосилы, необходимая для управления глубиной резкости, а также точного дозирования проходящего света и получения правильной экспозиции[5]. При регулировке диафрагмы её отверстие закрывается от краёв к центру, поскольку наиболее высокое качество изображения обеспечивается центральной частью световых пучков.
Различают геометрическое и эффективное относительные отверстия: геометрическое представляет собой отношения диаметра входного зрачка объектива к его фокусному расстоянию и выражается дробью с числителем, равным единице. В фотографии вместо единицы часто используют латинскую букву f, которая конкретизирует назначение дроби: например, относительное отверстие 1/5,6 обозначается f/5,6[* 2]. Эффективное относительное отверстие всегда меньше геометрического, поскольку учитывает потери на поглощение и рассеяние света в стекле[6]. Эти потери снижаются при помощи просветления, но в сложных многолинзовых объективах могут быть существенны и должны учитываться, поэтому шкалы диафрагмы отражают значения эффективных относительных отверстий
Градуировка шкал диафрагмы производится в диафрагменных числах таким образом, что каждому соседнему делению соответствует изменение светосилы в два раза. Таким образом, при выборе соседнего значения шкалы, экспозиция всегда меняется на одну экспозиционную ступень. Так как светосила является квадратом относительного отверстия, последнее должно изменяться в 2{\displaystyle {\sqrt {2}}} раз
Диафрагменные числа, обозначающие геометрическую светосилу некоторых объективов, могут браться из промежуточных рядов, поскольку отражают расчётный предел возможностей конкретной конструкции, например 1,2; 4,5; 6,3. В вариообъективах максимальное относительное отверстие может быть переменным в зависимости от фокусного расстояния. В этих случаях на оправе через тире или тильду указываются крайние значения диафрагменного числа, например 3,5~5,6. Ручная регулировка диафрагмы в современных фотообъективах возможна только ступенчато из-за особенностей управления зеркальных фотоаппаратов. Однако в автоматических режимах приоритета выдержки или программном ирисовая диафрагма регулируется бесступенчато, как в киносъёмочной и телевизионной оптике.
Устройство ирисовой диафрагмы
Автоматическая двухлепестковая диафрагма видеокамерыИрисовая диафрагма (от лат. iris «радужная оболочка») состоит из нескольких (обычно от 2 до 20) поворотных лепестков (ламелей), приводимых в движение вращающимся кольцом на оправе объектива. Лепестки могут быть различной формы, но при полностью открытой диафрагме они формируют круглое отверстие, при частично закрытой — многоугольник, число сторон которого соответствует количеству ламелей. Этот многоугольник отображается в случае попадания в кадр несфокусированных точечных источников света, образующих «боке». Уменьшение количества лепестков ирисовой диафрагмы приводит к заметности углов между ними. Простейшие автоматические диафрагмы любительских кинокамер и видеокамер, состоящие из двух лепестков с треугольными вырезами, давали ромбовидное изображение точечных источников. Наиболее совершенными считаются диафрагмы, состоящие из 8 и более лепестков, поскольку обеспечивают сечение пучков, близкое к окружности. Такие пучки создают наиболее совершенный оптический рисунок.
Установка значения относительного отверстия при использовании ирисовой диафрагмы производится поворотным кольцом, шкала которого размечена в соответствии с получаемыми диафрагменными числами. Такое управление используется в большей части кино-, фото- и телевизионного оборудования за исключением однообъективных зеркальных фотоаппаратов и некоторых кинокамер с зеркальным обтюратором[11]. Визирование непосредственно через съёмочный объектив вынуждает использовать специальные механизмы ирисовой диафрагмы, позволяющие вручную или автоматически закрывать её только в момент съёмки. Особое значение такая возможность получила после распространения фазового автофокуса, неработоспособного при закрытой диафрагме.
Диафрагма с предварительной установкой
Обычно такой привод диафрагмы состоит из двух колец, одно из которых напрямую управляет относительным отверстием, а другое — кольцо предустановки — регулирует положение стопора вращения первого. При этом угол поворота первого кольца ограничивается до выбранного рабочего значения. В результате фотограф может полностью открывать диафрагму для фокусировки, и вручную закрывать её до предустановленного относительного отверстия, не отрывая взгляда от видоискателя, простым поворотом кольца от упора до упора. Принцип используется в однообъективных зеркальных фотоаппаратах, позволяя производить фокусировку объектива при полностью открытом отверстии, и закрывать диафрагму, не глядя на её шкалу, непосредственно перед съемкой[12].
Такая конструкция использовалась в иностранной оптике для зеркальных камер (например, «Asahi Pentax», «Miranda-D») до изобретения прыгающей диафрагмы, и позднее, когда её механическая реализация по тем или иным причинам затруднена, в том числе в шифт-объективах. Например, объектив «PC-Nikkor 3,5/28» с такой диафрагмой выпускался до 2006 года[13][14]. Диафрагма с кольцом предустановки широко использовалась в советских объективах для фотоаппаратов «Зенит», не оснащённых механизмом нажимной диафрагмы: «Гелиос-44-2», «Юпитер-9» «Мир-1» и других[15]. Некоторые объективы («Индустар-61 Л/З», «Юпитер-37А», «MC Волна-9») имели одно кольцо, служившее как для установки значения, так и для закрывания диафрагмы[16][12]. В этом случае предустановка осуществлялась после нажатия на кольцо в осевом направлении[17].
Нажимная диафрагма
Объектив с механизмом нажимной диафрагмы на оправе системы «Exakta»Диафрагма, закрываемая до рабочего значения вручную за счёт дополнительного усилия на спусковой кнопке или кнопке оправы объектива, кинематически совмещённой со спусковой[18]. Предшествовала изобретению прыгающей диафрагмы и впервые использована в камерах «Exakta», а затем «Topcon» и «Miranda», в сочетании с расположением спусковой кнопки на передней стенке корпуса[19]. В иностранных источниках называется «автоматическая нажимная диафрагма» (англ. Automatic Pressure Diaphragm)[20]. Ранние образцы основаны на оригинальной конструкции оправы объектива со специальной кнопкой закрывания диафрагмы.
По такому же принципу сконструирован штатный объектив «Гелиос-44» для фотоаппарата «Старт». В СССР выпускалась серия фотоаппаратов с приводом от спусковой кнопки, размещённым внутри корпуса: «Зенит-ЕМ», «Зенит-11», а также разработанные на основе «Зенита-TTL», включая более поздние «Зенит-122» и «Зенит-412». С таким приводом могут использоваться объективы с механизмом прыгающей диафрагмы, как правило с резьбовым креплением. В зарубежном фотоаппаратостроении нажимная диафрагма быстро уступила место прыгающей, поскольку приводит к недопустимому возрастанию усилия на спусковой кнопке.
Прыгающая диафрагма
Наиболее сложная разновидность привода ирисовой диафрагмы, обеспечивающая кадрирование и фокусировку при полном отверстии в камерах со сквозным визированием и фазовым автофокусом[* 3]. Кроме зеркальной фотоаппаратуры прыгающая диафрагма использовалась в киносъёмочной технике: например в кинокамере «Arriflex 16SR» и объективах «Taylor Hobson»[11][21]. В этом случае она автоматически закрывается при запуске лентопротяжного механизма, обеспечивая перед этим точную фокусировку.
Наиболее ранние механизмы прыгающей диафрагмы оснащались пружиной с предварительным взводом, которая закрывает относительное отверстие после нажатия на спусковую кнопку[18][19]. Кольцо установки значения диафрагмы изменяет только положение механизма, задающего степень закрытия при срабатывании привода. После каждого снимка диафрагма не возвращалась в открытое состояние и требовался её взвод[22]. Такое устройство под названием «автоматическая пружинная диафрагма» (англ. Automatic Spring Diaphragm) исключает дополнительное усилие на кнопке, и нашло применение как в иностранной фотоаппаратуре, например, полуавтоматических объективах для «Экзакты», «Topcon-R» и «Pentax S1», так и в советской, например в объективе «Индустар-29» фотоаппарата «Салют»[18][23].
Наиболее известный отечественный объектив с таким приводом — «Таир-3ФС» для «Фотоснайпера». В зарубежных источниках заводная диафрагма получила название «полуавтоматической» (англ. Semi Automatic Diaphragm). Однако, широкого распространения система не получила из-за внедрения в фотоаппаратах зеркала постоянного визирования, возвращающегося в рабочее положение после срабатывания затвора. Это вынудило разработчиков сделать прыгающую диафрагму также самовозвратной, то есть не требующей взвода пружины после каждого снимка[22]. В результате диафрагма автоматически открывается после срабатывания, и в видоискателе постоянно наблюдается яркое изображение при полном отверстии. В СССР самовозвратную диафрагму первоначально называли «моргающей», а за рубежом «автоматической» (англ. Fully Automatic Diaphragm, Fully Automatic Lens)[24]. Поэтому иностранные объективы первых серий с таким приводом диафрагмы часто содержали в названии слово «Auto»: например, «Nikkor Auto», «Auto-Takumar» и т. д.
В фотоаппаратах прыгающая диафрагма закрывается до рабочего значения специальным механизмом, как правило совмещённым с подъёмом зеркала. При этом используется усилие пружин или электромагнита, а не спусковой кнопки, что обеспечивает плавный спуск[15]. Прыгающей диафрагмой оснащались практически все зарубежные зеркальные фотоаппараты, начиная с середины 1960-х годов, а также советские камеры «Зенит-19» и «Зенит-18». Байонетные зеркальные фотоаппараты «Киев», камеры серии «Зенит-Автомат» и семейства «Алмаз» имели аналогичный механизм, поскольку прыгающая диафрагма и её привод являются составной частью большинства стандартных байонетов. В современных объективах с прыгающей диафрагмой, лишённых кольца её установки, например Canon EF, закрытие производится электромагнитом, одновременно регулирующим рабочее значение в соответствии с командами камеры. В некоторых фотосистемах, например, Nikon AI-S механический привод прыгающей диафрагмы выполняет также функцию выбора её рабочего значения в автоматических режимах приоритета выдержки и программном[25].
Прыгающая диафрагма повышает удобство съёмки, но лишает фотографа возможности визуальной оценки глубины резкости, поскольку изображение в видоискателе видимо только при полном отверстии. Для полноценного контроля изображения большинство фотоаппаратов оснащаются репетиром диафрагмы[15].
Механизм прыгающей диафрагмы во многом аналогичен центральному фотозатвору и обладает сопоставимым быстродействием. Эти особенности ограничивают количество лепестков: дешёвые объективы оснащаются диафрагмой, имеющей 6 или даже 5 лепестков, образующих отчётливый многоугольник[26]. Такое сечение пучков негативно сказывается на характере оптического рисунка, поэтому дорогая оптика оснащается многолепестковыми механизмами. При использовании объективов, оснащённых прыгающей диафрагмой через адаптер на фотоаппаратах других фотосистем, её привод не работает[* 4].
Влияние диафрагмы на изображение
Изображение при диафрагме 1/1,4 (слева) и 1/9 (справа). Основная разница: хроматические аберрации, общая резкость, глубина резкостиКроме регулировки экспозиции и глубины резкости, изменение относительного отверстия при помощи диафрагмы влияет на другие важные параметры изображения:
- аберрации — уменьшение относительного отверстия приводит к снижению аберраций системы, поскольку уменьшается сечение пучков, и для построения изображения используется только центральная часть линз с наименьшей кривизной. Наиболее низкие значения аберрации принимают при диафрагме, закрытой до минимального значения;
- дифракция — как любая другая оптическая система, объектив дифракционно ограничен за счёт дифракции света на краях апертурной диафрагмы[27]. Это выражается в снижении разрешающей способности при уменьшении относительного отверстия;
Таким образом, при закрывании диафрагмы одновременно со снижением аберраций возрастает дифракционное ограничение[28]. Максимальное разрешение объектива достигается при средних значениях диафрагмы: f/8—f/11, когда аберрации и дифракция уравновешены.
- виньетирование — чем меньше отверстие, тем меньше спад освещённости от центра к краям изображения. Виньетирование максимально при полностью открытой диафрагме и становится малозаметным при закрытии диафрагмы на две и более ступени. Это объясняется тем, что оправа объектива, которая служит основной причиной виньетирования, ограничивает лишь края световых пучков, диаметр которых уменьшается при снижении относительного отверстия[29].
Интересные факты
- Творческий союз семерых американских фотохудожников носил название F/64, соответствующее крайнему значению диафрагмы объективов крупноформатных фотоаппаратов. Название группы отражало приверженность к направлению так называемой «прямой фотографии», основанной на детальном отображении натуры. Для этого требуется большая глубина резкости, возможная при диафрагме, закрытой до минимального значения[30].
См. также
Примечания
- ↑ В некоторых случаях отверстие может быть не одно, и иметь форму, отличающуюся от круга
- ↑ Вместо дроби в обозначении может использоваться двоеточие, например 1:5,6
- ↑ В цифровых фотоаппаратах с электронным видоискателем прыгающая диафрагма необязательна, поскольку яркость изображения и эффективность контрастного автофокуса не зависят от относительного отверстия. В беззеркальных камерах прыгающая диафрагма применяется только для повышения точности ручной фокусировки или эффективности гибридного автофокуса
- ↑ Исключение составляют адаптеры, оснащённые многорычажными передаточными механизмами, а также дорогостоящие адаптеры со встроенным микропроцессором, конвертирующим команды различных интерфейсов для электромагнитных диафрагм
Источники
- ↑ Общий курс фотографии, 1987, с. 26.
- ↑ Общий курс фотографии, 1987, с. 27.
- ↑ Диафрагма (рус.). Конструкция фотоаппаратов. Zenit Camera. Проверено 14 сентября 2013.
- ↑ Регулирование — освещённость (рус.). Большая Энциклопедия нефти и газа. Проверено 8 сентября 2013.
- ↑ 1 2 3 Гордийчук, 1979, с. 152.
- ↑ Краткий справочник фотолюбителя, 1985, с. 35.
- ↑ f-стопы и t-стопы (рус.). Объективы. Образовательный проект FUJIFILM (29 августа 2012). Проверено 3 мая 2014.
- ↑ Т-диафрагма // ГЛОССАРИЙ КИНЕМАТОГРАФИЧЕСКИХ ТЕРМИНОВ. — Kodak. — С. 208. — 213 с.
- ↑ 1 2 Ряды числовых значений относительных отверстий (рус.). Фототехника. Zenit Camera (25 января 1982). Проверено 19 октября 2013.
- ↑ Объективы фотографические, киносъемочные и телевизионные съемочные. Ряды числовых значений относительных отверстий (рус.). ГОСТ 17175-82. Открытая база ГОСТов (25 января 1982). Проверено 19 октября 2013.
- ↑ 1 2 Гордийчук, 1979, с. 133.
- ↑ 1 2 Краткий справочник фотолюбителя, 1985, с. 43.
- ↑ Ken Rockwell. Nikon 28mm PC (англ.). Персональный сайт. Проверено 4 февраля 2017.
- ↑ Leo Foo. PC-Nikkor Lenses 28mm f/3.5 (англ.). Photography in Malaysia. Проверено 4 февраля 2017.
- ↑ 1 2 3 История «одноглазых» (рус.). Статьи. PHOTOESCAPE. Проверено 11 апреля 2013. Архивировано 18 апреля 2013 года.
- ↑ Советское фото, 1985, с. 43.
- ↑ Фотокурьер №2, 2006, с. 24.
- ↑ 1 2 3 Общий курс фотографии, 1987, с. 34.
- ↑ 1 2 Фотокурьер №2, 2006, с. 25.
- ↑ Инструкция к фотоаппарату Exakta VX 500, с. 24.
- ↑ Киносъёмочная техника, 1988, с. 44,99.
- ↑ 1 2 Фотоаппараты, 1984, с. 69.
- ↑ Инструкция фотоаппарата Topcon-R (англ.). Camera Manual Library. Проверено 14 сентября 2013.
- ↑ Фотокинотехника, 1981, с. 265.
- ↑ Jurgen Becker. The difference between an AI lens and an AI-S lens (англ.). Background. «Trough the F-mount» (19 February 2012). Проверено 30 марта 2015.
- ↑ Фотоаппараты, 1984, с. 42.
- ↑ Дифракция объектива её влияние на фотографию (рус.). Статьи о фотографии. FotoMTV.ru. Проверено 17 сентября 2013.
- ↑ LENS DIFFRACTION & PHOTOGRAPHY (англ.). Tutorials. Cambridge in Colour. Проверено 17 сентября 2013.
- ↑ Общий курс фотографии, 1987, с. 20.
- ↑ 15 ноября 1932 года на стене музея М. Х. де Янга в Сан-Франциско был вывешен манифест знаменитой фотогруппы F64 (рус.). История фотографии. Photo Island. Проверено 13 сентября 2013.
Литература
- Гордийчук О. Ф., Пелль В. Г. Раздел III. Киносъёмочные объективы // Справочник кинооператора / Н. Н. Жердецкая. — М.: «Искусство», 1979. — С. 143—173. — 440 с.
- Е. А. Иофис. Фотокинотехника / И. Ю. Шебалин. — М.,: «Советская энциклопедия», 1981. — С. 265. — 447 с.
- С. Лапшенков, В. Чаусов. Объектив «MC Волна-9» (рус.) // Советское фото : журнал. — 1985. — № 4. — С. 42—43. — ISSN 0371-4284.
- Н. Д. Панфилов, А. А. Фомин. Краткий справочник фотолюбителя. — М.,: «Искусство», 1985. — С. 33—46. — 367 с.
- Фомин А. В. § 5. Основные узлы и механизмы фотоаппаратов // Общий курс фотографии / Т. П. Булдакова. — 3-е. — М.,: «Легпромбытиздат», 1987. — С. 25—43. — 256 с. — 50 000 экз.
- М. Я. Шульман. Фотоаппараты / Т. Г. Филатова. — Л.,: «Машиностроение», 1984. — 142 с. — 100 000 экз.
Ссылки
wikipedia.green
Диафрагма в фотоаппарате. Что такое диафрагма? Как настроить диафрагму.
Диафрагма — это просто. В двух словах, диафрагма — это устройство в объективе, которое дозирует количество света.
Устройство диафрагмы в объективе Nikon Nikkor 105mm 1:1.8 (AI-S)
Для большего понимания работы такого устройства приведу пример из жизни. Когда люди смотрят на солнце — они щурят глаза, то есть уменьшают щель, через которую проходит свет. Если бы люди не щурились, солнце бы сожгло своим сильным светом сетчатку глаза. Ночью нужно делать наоборот — открывать глаза пошире, чтобы захватить побольше света, при этом еще и расширяются зрачки. Глаза с большими зрачками имеют много животных, которым нужно хорошо видеть ночью.
Часто диафрагму называют еще ‘светосилой’ или ‘апертурой’ или ‘относительным отверстием’ или ‘числом F‘. Эти понятия сильно связаны между собой и для многих фотографов являются синонимами. Но среди них есть небольшие отличия, описанные ниже.
Относительное отверстие объектива — это отношение действующего отверстия объектива к фокусному расстоянию объектива. Величина обратная относительному отверстию называется диафрагменным числом или числом диафрагмы.
Относительное отверстие объектива численно выражается отношением или дробью. Например, возьмем объектив, у которого установлено относительное отверстие в 16 раз меньше его фокусного расстояния, в итоге относительное отверстие численно можно будет записать такими способами: 1:16 или f1/16 или f=1:16 или F 1:16 и т.д. Никакой особой разницы в записи нет и каждый фотограф всегда поймет о чем идет речь.
Если же взять число, обратное относительному отверстию, то мы получим число диафрагмы. Обычно именно под этим числом фотографы непосредственно понимают общий термин ‘диафрагма’. Если взять тот же объектив, у которого установлено относительное отверстие в 16 раз меньше его фокусного расстояния, то его число диафрагмы будет равно значению 16. А численно его можно будет записать такими способами: F16, F/16, 16 (такое ‘голое’ число диафрагмы указывается на корпусе объектива). Никакой особой разницы в записи нет.
Некоторые объективы имеют на своем корпусе кольцо, отвечающее за управление диафрагмой. На кольце обычно есть разметка, состоящая исключительно из чисел диафрагмы (показано на рисунке ниже). Практически все современные объективы такого кольца не имеют, а управления диафрагмой происходит за счет электроники и органов управления камерой.
Кольцо управления диафрагмой на объективе Nikon ED AF Nikkor 80-200mm 1:2.8D (MKII). С помощью кольца можно установить значения F/2.8, F/4, F/5.6, F/8, F/11, F/16, F/22.
Обычно понятие ‘светосила’ и ‘диафрагма’ являются синонимами, но на самом деле между ними существует определенная ризница. Так, диафрагма отвечает только за геометрическую светосилу (отношение линейных геометрических показателей). А за общую ‘настоящую светосилу’ объектива отвечает не только диафрагма, но и множество других факторов: оптическая схема объектива, процент отражения и пропускания света объективом, падение диафрагмового числа при фокусировке на разные дистанции, процент поглощения света фотофильтром и т.д. Детально про разницу между понятиями ‘диафрагма’ и ‘светосила’ найдете в разделе про ‘T-стопы‘.
Диафрагму иногда еще называют ‘Апертурой объектива’ (лат. ‘Apertura’ — ‘Отверстие’). Потому на многих камерах режим замера экспозиции с приоритетом диафрагмы называется ‘A‘ или ‘AV‘ — ‘Aperture Value’ — ‘Значение Апертуры’. Детально про этот режим описано в разделе ‘P, A(AV), S(TV), M‘.
Обратите внимание, что величина передней линзы объектива и, собственно, величина переднего светофильтра никакого прямого отношения к светосиле объектива не имеет. Разные объективы с одинаковым фокусным расстоянием и одинаковой максимальной диафрагмой могут иметь абсолютно разные диаметры своей передней линзы. Например, возьмем два объектива класса 50 mm F/1.4: Nikon AF Nikkor 50mm 1:1.4D и Sigma 50mm 1:1.4 DG HSM EX. У первого диаметр светофильтра крохотный — 52 мм, у второго огромный — 77 мм. Но их светосила (практически — максимальная диафрагма) будет одинаковой.
Какая она, диафрагма?
Под механической частью устройства диафрагмы понимают изменяющееся круглое отверстие в объективе. Обычно отверстие открывается и закрывается с помощью лепестков. Лепестки в таком случае называют лепестками диафрагмы, а саму диафрагму — ‘ирисовой’ (от английского ‘iris’ — ‘радужная оболочка глаза’). От количества и скругленности лепестков диафрагмы зависит то, на сколько будет формируемое отверстие круглым. Чем скругление отверстия диафрагмы сильней — тем лучше. Профессионалы часто диафрагму называют просто ‘дыркой‘, так как это действительного, своего рода дырка, которая изменяет свои размеры и дозирует количество света.
На что влияет диафрагма:
- На количество света, который может пропустить объектив за какое-то время.
- На управление глубиной резко изображаемого пространства (ГРИП)
- На яркость изображения в оптическом видоискателе
- На качество изображения, в особенности на его резкость, аберрации, виньетирование, боке и разные визуальные эффекты.
Влияние на ГРИП
Как оказалось, диафрагма влияет не только на количество света, но и на глубину резкости. Чем меньше число F — тем меньше и глубина резкости. Чем больше число F — тем больше глубина резкости. Это один из основных приемов в фотографии для управления точкой внимания на фото. Очень важно иметь возможность управлять ГРИП для портретов, где нужно акцентировать внимание именно на человеке. Макро фотографы прекрасно знают что такое ГРИП, им приходиться снимать на очень сильно закрытых диафрагмах, чтобы увеличить глубину резкости. Вообще, там где пишут про ГРИП, пишут и про размытый фон. Как лучше всего фотографировать с размытым фоном можете прочитать в моей статье — Фотографируем с Размытым Фоном.
Размытие заднего фона при разных значениях диафрагмы
Предварительный просмотр глубины резкости
Обычно современные камеры имеют возможность наводиться на резкость при полностью открытой диафрагме. Когда делается снимок, автоматика камеры закрывает диафрагму до установленного значения. Чтобы посмотреть как будет выглядеть изображения при закрытой диафрагме, иногда можно воспользоваться репетиром диафрагмы. Это позволяет без снимка посмотреть в видоискатель (оптический или электронный) как будет выглядеть картинка, когда камера закроет диафрагму. Можете почитать более детально про предварительный просмотр глубины резкости.
Диафрагмирование для улучшения картинки
Под диафрагмированием понимают просто изменения значения диафрагмы. С помощью управления диафрагмой можно добиться от объектива более резкого изображения. В основном, самое резкое изображение достигается где-то на средних значениях диафрагмы того или иного объектива. На самом большом значении диафрагмы объективы страдают хроматическими аберрациями и виньетированием. При закрытии диафрагмы ХА и виньетирование практически пропадают. На очень маленьких диафрагмах объективы страдают потерей резкости от дифракции. Также, при закрытии (уменьшении диафрагмы) повышается не только резкость, но и контраст снимка. Большая диафрагма позволяет проводить визирование через оптический видоискатель без особых проблем, так как объектив дает много света и через глазок хорошо видно весь кадр. Визировать с диафрагмой ниже F5.6 через оптический видоискатель можно только при хорошем освещении. Также, снимки с бОльшей диафрагмой могут казаться более яркими и насыщенными — такой эффект связан с более плавными переходами на снимках темных областей в светлые.
Боке и диафрагма связаны навек
Диафрагма очень сильно влияет на рисунок боке. Обычно наилучшее боке для объектива достигается на максимально открытой диафрагме. При этом само физическое отверстие максимально круглое. При закрытии диафрагмы лепестки диафрагмы вместо круга образуют разные многогранники. Эти многогранники отчетливо видно в зоне нерезкости. Очень часто такие многогранники называют гайками, шайбами и циркулярными пилами.
Так как в дешевых объективах присутствует малое количество лепестков диафрагмы, обычно не больше 5-6, то в зоне нерезкости появляются фигуры точь-в-точь напоминающие «гайки». Ценятся те объективы, которые на закрытых диафрагмах дают правильные круглые светящиеся пятна в зоне нерезкости, например, к ним можно отнести Nikon AF DC-Nikkor 105mm 1:2 D Defocus Image Control или Таир-11А 2,8/135. В новых объективах очень редко можно встретить большое количество лепестков диафрагмы, но сейчас делают более скругленные лепестки, которые даже при малом их количестве, дают круглое отверстие.
Ниже приведены мои фотографии, полученные с помощью разных фотоаппаратов и объективов и снятые на разных значениях числа F. Параметры съемки (EXIF) для каждой фотографии указаны в нижней строчке.
Диафрагма в камерах телефонов и других маленьких устройствах
Диафрагма, это механическая часть объектива, ее нельзя сделать программно. Почти во всех телефонах нет физического устройства диафрагмы. Во многих ‘мыльницах’ тоже нет диафрагмы. Как же быть? Обычно камера в таких устройствах дозирует количество света только выдержкой и вариацией значения ISO, а само значение диафрагмы постоянно зафиксировано на максимальном значении. Для примера, на моей Nokia 7610 указано, что F2.8, потому камера всегда снимает на F2.8.
Как настроить диафрагму в фотоаппарате?
В камерах за диафрагму отвечает число F (число диафрагмы). Оно показывает в сколько раз диаметр относительного отверстия меньше фокусного расстояния объектива, на объективе это записывается как f1/1.4 или f1/5.6, иногда можно встретить написание f=1:6.3 или 1:5.6, или f/16, f/3.2. Часто, на объективах или камерах указывается только одно диафрагменное число, например ‘1.4’ или ‘16.0’. Обычно число диафрагмы пишется с большой буквой ‘F’ без дробей, например, F 8.0, а относительное отверстие чаще записывают через маленькую букву ‘f’, например f 1:11 (написания могут быть какие-угодно). Проще всего настроить диафрагму, переведя камеру в режим приоритета диафрагмы. На главном колесе управления камерой, либо в меню фотоаппарата, такой режим обозначается ‘А’ или ‘AV’. Чтобы легко запомнить, можно просто произнести: диАфрагмА — значит нужно включать режим ‘А’. Детально про творческий режим приоритета диафрагмы написано здесь.
‘Светлые’ и ‘темные’, ‘быстрые’ и ‘медленные’ объективы
От максимального значения диафрагмы зависит то, на сколько объектив можно будет использовать в плохих условиях освещенности. ‘Светосильными’ или ‘светлыми’ называют объективы с большой диафрагмой, обычно, значение F должно быть ниже 2.8. То есть объективы с максимальными диафрагмами F1.4, F1.8, F2.0, F2.2, F2.5, F2.8 называют светосильными или просто светлыми. Все что ниже F1.4 называют супер светосильными. К супер светосильным объективам можно отнести Nikon 50mm f/1.2 AI-S Nikkor или Canon Lens FD 55mm f/1.2 S.S.C. Объективы, которые имеют значение диафрагмы от F/2.8 до F/5.6 называют обычными среднесветосильными объективами, к таким объективам можно отнести Nikon 24-85mm f/2.8-4D AF IF Nikkor или Nikon 300mm f/4.5 Nikkor-H Nippon Kogaku Japan Auto Non-AI. Объективы, у которых максимальная диафрагма меньше F/5.6 называют слабосветосильными или ‘темными‘. К таким объективам можно отнести МС МТО-11 1000mm F10.0. Кстати, сделать светосильный зум очень сложно, более детально здесь.
Разные отверстия при разных значениях числа F
Так как диафрагма влияет на скорость выдержки, то объективы еще делят на быстрые и медленные. Под быстрым объективом понимают то, что с его помощью можно снять изображение с короткой выдержкой (с ‘быстрой’ выдержкой). А под медленным, то, что с его помощью можно снять фото с длинной (‘медленной’ выдержкой). Если зафиксировать значение ISO, то именно от диафрагмы зависит выдержка, и чем светлее объектив, тем он быстрее. И чем темнее объектив, тем он медленней.
Разница в светосиле
Разницу в значениях диафрагмы и других фотографических переменных обычно измеряют в стопах. При изменении диафрагмы на один стоп выдержка изменится в два раза. Также, при изменении диафрагмы на один стоп можно вместо выдержки изменить ISO в два раза. Очень важное замечание, что разница в значениях диафрагмы не линейная, а квадратичная. Возьмем две диафрагмы F/5.6 и F/2.8, казалось бы, разница в геометрической светосиле составляет 5.6/2.8=2 раза, но это не верно. На светосилу влияет площадь круга, сформированного диафрагмой, а не ее диаметр. Число F связано только с диаметром. Для подсчета разницы в площадях нужно брать квадраты диаметров. Потому получается, что разница в светосиле между F/5.6 и F/2.8 составляет (5,6*5,6)/(2,8*2,8)=4 раза. Вот такая вот хитрость. Как это запомнить? Есть два выхода, либо делить квадраты чисел F, либо сначала делить числа F, а потом возводить в квадрат результат. Зачем я утомляю расчетами — а потому, что часто фотолюбители не имеют представления про то, во сколько раз один объектив ‘светлее’ или ‘темнее’ другого объектива.
Также, опытные фотографы знают про так называемый диафрагменный ряд чисел, в котором каждых два соседних числа F отличаются на один стоп.
Ряд чисел F: 1, 1.4, 2, 2.8, 4, 5.6, 8, 11, 16, 22, 32, 46 и т.д.
Золотое правило:
Диафрагма и выдержка связаны золотым правилом. Чтобы сохранить правильную экспозицию при одинаковых ИСО нужно либо закрыть диафрагму и увеличить выдержку, либо, наоборот, открыть диафрагму и уменьшить выдержку.
Закрыть, открыть, увеличить уменьшить — не нужно путаться
Все очень просто. Закрыть или уменьшить диафрагму — означает повысить число F. Была диафрагма F2.8, когда ее закрыли, она стала F5.6, закрыли еще сильней, она стала F16.0 и т.д. Например, встречается фраза ‘прикрыл дырку на два стопа’, расшифровывается это так: ‘сделал число F большим и уменьшил площадь отверстия в 4 раза’. Главное не запутаться, когда диафрагма открывается, число F уменьшается. А когда диафрагма закрывается — число F увеличивается. Например, была диафрагма F32.0, когда ее открыли, она стала F8.0, когда открыли еще сильней, она стала F5.6.
Что делать — ничего не понятно
Если у Вас зеркалка, переверните камеру задом наперед, чтобы вы смотрели в объектив, нажмите кнопку спуска (сделайте снимок) и Вы увидите как дырочка в объективе закроется и откроется — вот так и работает диафрагма. Если же вы всматривались в свой объектив и ничего не увидели, то ниже показан видеоролик с замедленным воспроизведением, где отчетливо видно, как работает диафрагма во время съемки. На видео лепестки закрываются до значения F/16 и формируют очень ‘маленькую дырочку’:
Я снимаю в основном на систему Nikon, потому у меня на сайте есть парочка интересных статей про тонкости работы диафрагмы на камерах Nikon:- Метод работы устройства диафрагма на цифрозеркальных камерах Nikon и его влияние на видеосъемку
- Объективы Nikon ‘E’ с электромагнитным управлением диафрагмы
- Интересное свойство диафрагмы на цифрозеркальных камерах Nikon
- Объективы G-типа и Non-G типа (с кольцом управления диафрагмой и без кольца управления диафрагмой)
- Работа со старыми объективами Nikon типа AI, AI-S, NON-AI, PRE-AI, AI-Converted которые передают или не передают значение диафрагмы в камеру
В комментариях можно задать вопрос по теме и вам обязательно ответят, а также можно высказать свое мнение или описать свой опыт. Для подбора фототехники я рекомендую большие каталоги различной фототехники, такие как E-katalog, или большие интернет магазины, такие как Rozetka. Много мелочей для фото можно найти на Aliexpress.
Выводы
Диафрагма — это дозатор светового потока, который влияет на экспозицию, ГРИП, яркость оптического видоискателя и качество изображения. Вообще, если не поснимаете на разных значениях числа F, не узнаете толком что это такое 🙂
Материал подготовил Аркадий Шаповал.
radojuva.com
Диафрагменный ряд. Что такое диафрагма и что значат эти цифры?
Диафрагма главный технический аспект фотографии, помимо ISO и выдержки. Благодаря пониманию как работает диафрагма и управляя ею мы делаем фотографии отделяя объект от фона или же снимаем детализированную картинку, на которой видно каждую деталь на фоне. В этой статье просто и наглядно показаны принципы работы с диафрагмой и разобрано такое понятие как диафрагменный ряд.
Что такое диафрагма?
Диафрагма – это отверстие в объективе, через которое в камеру проходит свет. Чтобы это понять, представим себе как устроен человеческий глаз. Роговица в наших глазах, как передний элемент объектива – собирает внешний свет, а затем передает его в радужную оболочку глаза. В зависимости от количества попадания света, зрачок либо увеличивается, либо уменьшается, и как следствие контролирует поток света, проходящий через него. Вот и выходит, что зрачок человеческого глаза, не что иное, как то, что мы называем отверстием в фотографии. Количество света, которое проходит в сетчатку (работает так же, как сенсор камеры), ограничивается размером зрачка (диафрагмой) – чем шире зрачок (диафрагма), тем больше света попадает на сетчатку (сенсор).
Таким образом, самый простой способ понять работу диафрагмы, сравнить его со зрачком. Чем больше размер зрачка, тем больше диафрагма, и чем меньше размер зрачка, тем меньше диафрагма.
Для наглядности, как работает диафрагма в объективе Canon 85mm f 1.8, можно посмотреть замедленное видео:
На видео хорошо видно, как 8 лепестков диафрагмы этого объектива сжимаются в момент спуска затвора и образуют отверстие, через которое проходит свет. К слову, чем больше лепестков диафрагмы у объектива и чем больше они закругляются, тем больше отверстие становится идеально круглым. Но это уже больше по теме боке.
Диафрагменный ряд – открытая или закрытая диафрагма
Диафрагменный ряд – последовательность чисел 1.4, 2, 2.8, 4, 5.6, 8, 11, указывающих на величину диафрагмы.
Диафрагменное число это отношение фокусного расстояния объектива к диаметру диафрагмы. Диафрагменное число так и записывается f/x (фокусное расстояние разделить на диаметр отверстия объектива).
Ряд диафрагменных чисел привязан к ступени экспозиции. Одна ступень экспозиции равна изменению освещённости в два раза. Соответственно, изменение на одно диафрагменное число равно изменению освещённости на одну ступень экспозиции.
Cтупень экспозиции на английский манер даже в России называют стопом («один стоп» или f-stop).
Чем больше открыта диафрагма, тем меньше диафрагменное число.
Чтобы через объектив проходило света в два раза больше (или иначе, на одну ступень больше), необходимо увеличить площадь отверстия в два раза. Рассмотрим иллюстрацию ниже. Размер круга представляет размер диафрагмы объектива – чем больше диаметр круга ( диафрагменное число), тем меньше значение диафрагмы f.
Теперь рассмотрим иллюстрацию ниже:
В первом случае свет проходит через отверстие площадью S1 с диаметром d1, а во втором случае площадь отверстия S2 в два раза больше
Диаметр отверстия d2 тоже увеличится, но не в два раза. Вычислить насколько изменится диаметр поможет формула расчёта площади круга.
Заменим площади отверстий в первом уравнении на формулы, выраженные через диаметры. И найдём соотношение между d2 и d1.
Извлечём корень из двойки и получим приблизительную формулу.
Другими словами, если площадь круга увеличилась в 2 раза, то его диаметр увеличился в 1.4 раза.
А теперь составим последовательность из диаметров отверстий так, чтобы каждое последующее отверстие имело площадь в два раза меньшую. Иначе говоря, количество света через каждое последующее отверстие должно уменьшаться на одну ступень. Начнём с единицы.
1 x 1.4 = 1.4
1.4 x 1.4 = 2
2 x 1.4 = 2.8
2.8 x 1.4 = 4
4 x 1.4 = 5.6
5.6 x 1.4 = 8
8 х 1.4 = 11 и т. д.
Теперь, понятно, откуда взялись столь странные цифры ряда диафрагм.
Этот диафрагменный ряд называется основным. В этом ряду изменение на одно число ведёт к изменению количества света на одну ступень. На фотоаппарате есть и другие диафрагменные числа, которые не входят в основной ряд.
Это промежуточные значения между основными числами. Благодаря промежуточным значениям, можно точнее выставить экспозицию. Например, между диафрагмой 5.6 и диафрагмой 8, есть ещё диафрагменные числа 6.3 и 7.1.
5.6 + 1/3 ступени экспозиции = 6.3
5.6 + 2/3 ступени экспозиции = 7.1
5.6 + 3/3 ступени экспозиции = 8
или
6.3 + 1/3 ступени экспозиции = 8
или
8 2/3 ступени экспозиции = 6.3 и т. д.
Таким образом, ряд диафрагм с шагом 1/3 ступени будет выглядеть следующим образом (красным выделены числа основного ряда):
…1, 1.1, 1,2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.5, 2.8, 3.2, 3.5, 4, 4.5, 5.0, 5.6, 6.3, 7.1, 8, 9, 10, 11, 13, 14, 16, 18, 20, 22, 25, 29, 32…
В настройках фотоаппарата можно выбрать и другой шаг изменения диафрагм 1/2 ступени экспозици. Тогда ряд диафрагм будет выглядеть так:
1.4, 1.8, 2.0, 2.5, 2.8, 3.5, 4.0, 4.5, 5.6, 6.7, 8.0, 9.5, 11, 13, 16, 19, 22, 27, 32, 38
В первом и во втором случае иногда встречаются одни и те же числа промежуточного диафрагменного ряда. Например, и при шаге 1/3 и при шаге 1/2 есть число 2,5 и 13. Это из-за неточности вычислений. Но в практической съёмке этим можно пренебречь.
Может ли быть диафрагма меньше единицы? Да, может. Это означает, что фокусное расстояние меньше диаметра отверстия диафрагмы.
Минимальное диафрагменное число указывается прямо на объективе. Например, цифры в маркировке объектива Canon EF 85 F/1.8 USM расшифровываются так : фокусное расстояние 85 мм, минимальное диафрагменное число – 1.8.
Если взять объектив с переменным фокусным расстоянием (зум-объектив), то можно увидеть два значения диафрагмы. Например, Canon EF 70-300 F/4-5.6 USM. Здесь получается, что при фокусном расстоянии 70 мм минимальное диафрагменное число будет равно 4, а при фокусном расстоянии 300 мм – 5.6.
НО есть и зум-объективы с постоянным минимальным значением диафрагмы. Например, Canon EF 70-200 F/2.8L, где при любом расстоянии от 70 мм до 200 мм минимальная диафрагма будет равна 2.8.
Максимальное диафрагменное число обычно не указывается.
Диафрагменное число прижилось среди фотографов?
Из-за своего удобства. Рассмотрим два объектива с разным фокусным расстоянием – 50 мм и 100 мм. Для объектива 50 мм диафрагма f/2 будет означать, что её отверстие открыто на 25 мм, а для объектива 100 мм диафрагма f/2 будет означать, что диафрагма открыта на 50 мм. Но и в том и другом случае количество света, падающего на матрицу, будет одинаково. Следовательно нам не надо запоминать диаметры в миллиметрах каждого конкретного объектива. Достаточно запомнить ряд диафрагм.
Глубина резкости
Это пожалуй самый творческий и художественный принцип выбора диафрагменного числа для съемки. Глубина резкости – расстояние, которое будет резким перед объектом съемки и на за ним.
На схеме ниже показаны два варианта глубины резкости, на первой диафрагма открыта на максимум и диафрагменное число наименьшее, поэтому глубина резкости маленькая, а на второй диафрагма прикрыта и диафрагменное число наибольшее, поэтому глубина резкости большая.
Так и выходит, чем больше диафрагменное число, тем больше глубина резкости.
Чтобы понять как изменяется глубина резкости, достаточно посмотреть примеры фотографий с разным числом диафрагмы:
С художественной точки зрения получается, что чем меньше значение диафрагмы, тем лучше размывается фон, тем самым отделяя объект съемки. И наоборот, если не нужно отделять объект от фона, нужно увеличить диафрагменное число.
Влияние диафрагмы на экспозицию
Чем меньше значение диафрагмы, тем больше света попадает на матрицу, соответственно картинка получается светлее. С увеличением значения диафрагмы количество света уменьшается и картинка постепенно становится недоэкспонирована, при условии что ИСО и выдержка не меняются.
Все фотографии ниже сняты с одними параметрами выдержка 1/250 ИСО 250, менялась только диафрагма
Значения диафрагмы для различных съемок
Когда мы разобрались с тем, как диафрагма влияет на глубину резкости и на экспозицию, можно понять какие значения лучше использовать для той или иной фотографии.
Диафрагмы со значением от f/1.4 до f/2.8 хорошо использовать для съемки портрета (одного или двух человек), как уже говорилось выше, для того чтобы лучше отделить объект от фона.
Диафрагмы со значением от f/5.6 до f/11 лучше использовать для съемки пейзажей, больших групп людей или же фотографий где важно не упустить ни одной детали.
Также важно учесть, что на значениях к примеру f/1.2 – f/2.0 возможно появление хроматических аберраций (цветовых искажений), а на значениях от f/11 и больше – дифракция (потеря резкости).
fimpuls.ru
Относительное отверстие — Википедия
Материал из Википедии — свободной энциклопедии
Относительное отверстие объектива — оптическая мера светопропускания объектива. Различают геометрическое и эффективное относительные отверстия. Геометрическим отверстием считается отношение диаметра входного зрачка объектива к его заднему фокусному расстоянию[1]. Эффективное относительное отверстие всегда меньше, чем геометрическое, поскольку учитывает потери света при его прохождении через стекло и рассеянии на границах с воздухом и деталях оправы.
Зависимость светопропускания объектива от относительного отверстияГеометрическое относительное отверстие N{\displaystyle N} выражают в виде дроби[2]:
- N=Df′{\displaystyle N={D \over f’}},
где D{\displaystyle D} обозначает диаметр входного зрачка, а f′{\displaystyle f’} — заднее фокусное расстояние. Относительное отверстие принято обозначать соотношением двух чисел, написанных через двоеточие. При этом, первое число всегда принимается за единицу, например 1:5,6. В современной литературе более широкое распространение получило обозначение относительного отверстия в виде дроби с числителем f, например f/5,6. Для зеркально-линзовых объективов площадь входного зрачка рассчитывается по более сложному закону, поскольку его центральная часть экранирована[1]. В этом случае диафрагма может иметь форму не круга, а кольца, и для нахождения диаметра входного зрачка необходимо реальный входной зрачок (кольцо) заменить при расчёте кругом эквивалентной площади. Диаметр найденного круга и будет являться искомым диаметром входного зрачка для применения в дальнейших расчётах.
Квадрат относительного отверстия называется светосилой и определяет соотношение яркости объекта и освещённости его изображения в фокальной плоскости[1]. Эффективное относительное отверстие вычисляется с учётом коэффициента светопропускания τ{\displaystyle \tau } оптической системы, учитывающего общую толщину стекла и количество границ воздух/стекло. Коэффициент, снижающий прозрачность объектива, определяется по формуле:
- τ=(1−P)n⋅(1−α)m{\displaystyle \tau =(1-P)^{n}\cdot (1-\alpha )^{m}},
где P{\displaystyle P} — доля света, теряемая при отражении одной поверхностью раздела сред;
- n{\displaystyle n} — число поверхностей раздела воздух/стекло;
- α{\displaystyle \alpha } — удельное поглощение света в 1 сантиметре стекла;
- m{\displaystyle m} — суммарная толщина линз объектива в сантиметрах.
Для непросветлённых объективов τ{\displaystyle \tau } не превышает 0,65. Объективы с просветлением теряют не более 10% света при его прохождении и рассеянии.
Приведённые способы расчёта геометрического и эффективного относительного отверстия справедливы только при фокусировке объектива на «бесконечность». Для конечных дистанций знаменатель дроби увеличивается из-за выдвижения объектива, приводя к уменьшению относительного отверстия. Эффект особенно заметен при макросъёмке, когда сопряжённое фокусное расстояние может превосходить расчётное в два и более раз. В этом случае пренебрегать изменением относительного отверстия недопустимо и требуются поправки при расчёте экспозиции[3].
Шкала диафрагмы объектива (нижняя), размеченная в диафрагменных числах. Положение кольца соответствует относительному отверстию f/8Если принять диаметр входного зрачка равным единице, геометрическое относительное отверстие может быть выражено следующим образом[4]:
- N=Df′=1k{\displaystyle N={D \over f’}={1 \over k}}.
В этом случае знаменатель относительного отверстия k{\displaystyle k} называют «диафрагменное число» или «число диафрагмы». Диафрагменное число вычисляется, как отношение фокусного расстояния объектива к диаметру его входного зрачка и обозначается цифрой. Диафрагменное число является величиной, обратной относительному отверстию[5][6].
- k=f′D=1N{\displaystyle k={f’ \over D}={1 \over N}}.
Этот параметр наиболее удобен для разметки шкал диафрагмы, поскольку не содержит дробей[7]. Регулировочная шкала ирисовой диафрагмы киносъёмочных объективов и фотообъективов старых типов (без автофокуса) градуируется в диафрагменных числах эффективного относительного отверстия, учитывающих потери света при его прохождении через стекло.
Каждое деление такой шкалы соответствует изменению светосилы в два раза, а относительного отверстия в 2≈1,41{\displaystyle {\sqrt {2}}\approx 1,41} раз[7][2]. Исключение могут составлять самые малые значения диафрагменного числа, соответствующие оптическим возможностям объектива, и не укладывающиеся в стандартный ряд[8]. Такое строение шкалы диафрагменных чисел используется с 1950-х годов, когда появилось понятие экспозиционного числа, и позволяет при повороте кольца на одно деление менять экспозицию точно на одну экспозиционную ступень.
На современных фотообъективах такая шкала (как и кольцо регулировки диафрагмы) отсутствует и установка диафрагмы производится дистанционно органами управления фотоаппарата. Шкала диафрагменных чисел современных цифровых фотоаппаратов имеет промежуточные значения, соответствующие 1/3 экспозиционной ступени:
1.0 | 1.1 | 1.2 | 1.4 | 1.6 | 1.8 | 2 | 2.2 | 2.5 | 2.8 | 3.2 | 3.5 | 4 | 4.5 | 5.0 | 5.6 | 6.3 | 7.1 | 8 | 9 | 10 | 11 | 13 | 14 | 16 | 18 | 20 | 22 | 25 | 29 | 32 |
При автоматическом управлении экспозицией относительное отверстие регулируется бесступенчато и диафрагменное число может принимать любые дробные значения.
- ↑ 1 2 3 Фотокинотехника, 1981, с. 228.
- ↑ 1 2 Гордийчук, 1979, с. 152.
- ↑ Гордийчук, 1979, с. 153.
- ↑ Общий курс фотографии, 1987, с. 17.
- ↑ Фотокинотехника, 1981, с. 78.
- ↑ Фотография: Техника и искусство, 1986, с. 20.
- ↑ 1 2 Краткий справочник фотолюбителя, 1985, с. 34.
- ↑ Общий курс фотографии, 1987, с. 18.
- Гордийчук, И. Б. Справочник кинооператора / И. Б. Гордийчук, В. Г. Пелль. — М. : Искусство, 1979. — 440 с. — 30 000 экз.
- Е. А. Иофис. Фотокинотехника / И. Ю. Шебалин. — М.,: «Советская энциклопедия», 1981. — С. 228. — 447 с. — 100 000 экз.
- Н. Д. Панфилов, А. А. Фомин. Краткий справочник фотолюбителя / Н. Н. Жердецкая. — М.: «Искусство», 1985. — С. 179—184. — 367 с. — 100 000 экз.
- Фомин А. В. § 4. Фотографические объективы // Общий курс фотографии / Т. П. Булдакова. — 3-е. — М.,: «Легпромбытиздат», 1987. — С. 124—130. — 256 с. — 50 000 экз.
ru.wikipedia.org
Диафрагма (оптика) — Википедия
У этого термина существуют и другие значения, см. Диафрагма.Диафрагма (от греч. διάφραγμα — перегородка) — непрозрачная преграда, ограничивающая поперечное сечение световых пучков в оптических системах.
Названия видов диафрагм определяются тем, в какой части оптической системы они используются и какую часть пучка света ограничивают.
Как правило, если вид диафрагмы не уточняется, имеется в виду апертурная диафрагма, ограничивающая пучок лучей, выходящих из осевой точки предмета, и определяющая освещённость изображения[1].
Апертурная диафрагма[править | править код]
Апертурная диафрагма, действующая диафрагма — специально установленная диафрагма или оправа одной из линз, которая ограничивает пучки лучей, выходящие из точек предмета, расположенных на оптической оси и проходящих через оптическую систему[2].
Часто располагается вблизи центра формирующей оптическое изображение оптической системы. Её изображение, сформированное предшествующей (по ходу лучей) частью оптической системы, определяет входной зрачок системы. Сформированное последующей частью — выходной зрачок[3].
Входной зрачок ограничивает угол раскрытия пучков лучей, идущих от точек объекта; выходной зрачок играет ту же роль для лучей, идущих от изображения объекта.
С увеличением диаметра входного зрачка (действующего отверстия оптической системы) растёт освещённость изображения.
Уменьшение до известного предела действующего отверстия оптической системы (диафрагмирование) улучшает качество изображения, так как при этом из пучка лучей устраняются краевые лучи, на ходе которых в наибольшей степени сказываются аберрации.
Диафрагмирование увеличивает также глубину резкости (глубину резко изображаемого пространства). В то же время, уменьшение действующего отверстия снижает, из-за дифракции света на краях диафрагмы, разрешающую способность оптической системы. В связи с этим апертура оптической системы должна иметь оптимальное значение.
Полевая диафрагма[править | править код]
Полевая диафрагма, диафрагма поля зрения — непрозрачная преграда, ограничивающая линейное поле оптической системы в пространстве предметов или в пространстве изображений[4]. В более общем случае полевая диафрагма ограничивает область пространства, отображаемую оптической системой[5].
Располагается в непосредственной близости от одного из фокусов оптической системы (в системах с оборачивающими элементами может располагаться в одном из промежуточных фокусов). Может иметь форму круга (в микроскопах, телескопах). В спектральных приборах имеет форму щели.
Определяет, какая часть пространства может быть изображена оптической системой.
Из центра входного зрачка диафрагма поля зрения видна под наименьшим углом.
Применения[править | править код]
- Кадровая рамка в фото- и киноаппаратах, фотоувеличителях также является полевой диафрагмой.
- Кадрирующая рамка и рамки-виньетки, используемые при печати фотоснимков, также являются разновидностью полевой диафрагмы.
- При макросъёмке иногда применяется полевая диафрагма в виде рамки, окружающей объект и служащей своеобразным «видоискателем».
- Примером изменяемой полевой диафрагмы в съёмочной аппаратуре являются дополнительные шторки, ограничивающие кадровое окно по вертикали в плёночном фотоаппарате Pentax Z1P для получения снимка с панорамным соотношением сторон кадра.
- Изменение с помощью кадрового окна размеров кадра в процессе съёмки или монтажа фильма позволяет создавать вариоскопическое кино (наиболее известны фильмы «Нетерпимость» 1916 года, «Дверь в стене» 1956 года)[6].
- Бленды и компендиумы также являются разновидностью полевой диафрагмы.
Бленды[править | править код]
Другие диафрагмы, имеющиеся в оптической системе, главным образом препятствуют прохождению через систему лучей, расположенных за пределами отображаемого поля. Аналог внешней диафрагмы, находящийся перед оптической системой кино- и фотоаппаратов, называют светозащитной блендой или компендиумом.
Точную границу между блендой и полевой диафрагмой провести невозможно, однако часто считается, что если изображение границ перегородки, сформированное оптической системой, является или может быть получено резким (в процессе фокусировки), эта перегородка является полевой диафрагмой. В противном случае речь идёт о бленде.
- ↑ Теория оптических систем, 1992, с. 92.
- ↑ Волосов, 1978, с. 47.
- ↑ Фотокинотехника, 1981, с. 26.
- ↑ Фотокинотехника, 1981, с. 244.
- ↑ Волосов, 1978, с. 48.
- ↑ Фотокинотехника, 1981, с. 43.
- Е. А. Иофис. Фотокинотехника / И. Ю. Шебалин. — М.,: «Советская энциклопедия», 1981. — С. 26—244. — 447 с.
- Д. С. Волосов. Фотографическая оптика. — 2-е изд. — М.,: «Искусство», 1978. — 543 с.
- Н. П. Заказнов, С. И. Кирюшин, В. И. Кузичев. Глава VI. Ограничение пучков лучей в оптических системах // Теория оптических систем / Т. В. Абивова. — М.: «Машиностроение», 1992. — С. 92—102. — 448 с. — 2300 экз. — ISBN 5-217-01995-6.
ru.wikipedia.org
Что такое диафрагма фотоаппарата? Принцип ее работы
Данная статья о том, что такое диафрагма фотоаппарата, прежде всего, посвящена новичкам в фотографии, но так же будет полезна и для умелых фотографов.
Что такое диафрагма?
Чтобы правильно научиться фотографировать, необходимо четко знать главные положения в фотографии, а именно: экспозиция, диафрагма (что такое глубина резкости), выдержка. Эта фото статья полностью посвящена одному из важнейших параметров фотосъемки — диафрагме.
Диафрагма — это размер (диаметр) отверстия, с помощью которого в объективе фотокамеры можно действовать на характеристики и качество прежде всего неподвижного изображения.
Отверстие, о котором идет речь, изменяется с помощью лепестков внутри объектива (см. рисунок ниже).
Самый сложный для начинающих фотолюбителей, желающих знать, как научиться профессионально фотографировать, момент состоит в том, что величины, в которых измеряется диафрагмы — это обратные значения относительного отверстия объектива. То есть, чтобы увеличить количество проходящего светового потока, необходимо увеличивать это отверстие (диаметр), это значит надо «приоткрыть» диафрагму, а именно выставить меньшее числовое значение диафрагмы.
Резюмируем: чем больше число диафрагмы, тем меньше пройдет света через объектив. Чем меньше это число, тем больше света пропустит объектив. То есть всё наоборот. Большая диафрагма обозначается меньшим числом. Меньшая диафрагма (меньше дырка для света) — большим числом диафрагмы.
Что с цифрами происходит в реальности. Чтобы световой поток сократить в два раза, нужно вдвое уменьшить отверстие диафрагмы, диаметр при этом меняется в (корень из двух — вспоминаем геометрию) 1,41 раза. Используемые диафрагменные значения связаны именно с диаметром отверстия в объективе (создаваемым лепестками), поэтому выходит ряд чисел, каждое из которых в 1,4 раза больше предыдущего:
f/1,4; f/2; f/2,8; f/4; f/5,6 и т.д.
Таким образом, к примеру, меняя диафрагму со значения f/2 на f/2,8 ослабляет поток света в два раза.
Для чего нужна диафрагма фотоаппарата?
Диафрагма фотоаппарата — это характеристика, которая влияет сразу на два свойства изображения: светосилу (количества света, проходимого внутрь фотоаппарата) и глубину резкости (расстояние от камеры между ближней и дальней границами, предметы в котором находятся в фокусе, то есть четко видны и не размыты).
Физически диафрагма фотоаппарата — это описание диаметра открытого отверстия внутри объектива. Мы упоминали выше, что диафрагма фотоаппарата — это тонкие металлические лепестки, находящиеся по кругу вдоль обода объектива. В момент съемки они могут закрывать поток света, соединяясь и образовывать малый диаметр.
Чем качественнее объектив, тем лепестков таких больше и на изображении можно отличить ровные края и угловатые края размытых световых точек:
Качество размытия — это лишь качество объектива. Чтобы показать, как работает диафрагма фотоаппарата, приведу пример серии фотографий:
Слева: закрытая диафрагма. В резкости почти весь кадр: от края стаканчика до стола.
Справа: открытая диафрагма. В резкости только содержимое стаканчика, а все, что отдаляется, плавно выходит из зоны глубины резкости.
Как количество света зависит от диафрагмы фотоаппарата?
Чем больше открыты лепестки объектива камеры, тем больше света проходит на светочувствительный элемент (матрица фотоаппарата или пленку). В дневное светлое время суток можно легко регулировать и контролировать диафрагму фотоаппарата, не волнуясь за то самое количество света.
Но! Когда общая освещённость снимаемого объекта мала, ваша фотография может получиться темной, если закрыть диафрагму фотоаппарата. Вы скажете, что можно увеличить ISO (чувствительность). Верно. Но у чувствительности есть шумовые характеристики, которые могут вам помешать при обработке и печати фотографии. Вы ответите: увеличиваем выдержку. Также верно для того случая, если вы запаслись штативом, чтобы при выдержке более 1/125 ваш кадр содержал какие-нибудь резкие детали.
Удачи!
nikon3100.ru
Станьте первым комментатором