Нажмите "Enter" для пропуска содержимого

Количество мегапикселей – — ?

Содержание

Насколько важно количество мегапикселей в камере?

Бытует распространенное заблуждение, что количество мегапикселей непосредственно влияет на качество фотографии. На деле, оно порождено талантливыми маркетологами, знающими, что люди очень любят различные циферки. Кроме того, измеримые показатели кажутся более объективными, и поэтому человек ощущает, что он сам делает выбор.
Именно поэтому многие камеры с меньшим разрешением матрицы делают более качественные снимки. И сегодня мы объясним, почему это так.

На что действительно влияют мегапиксели?

Мегапиксели в камере влияют на детализацию изображения, распечатанного на листе определенного размера. Чем разрешение матрицы выше, тем лучше картинка будет смотреться на бумаге большого размера. Так что на качество изображения влияют также особенности сенсора и апертура.

Сама матрица состоит из множества ячеек (пикселей), количество которых и определяет ее разрешение. Но проблема тут в том, что при том же количестве пикселей их размер может отличаться. Если они будут слишком маленькими, то смогут взять лишь небольшое количество света. Как следствие, оставшиеся лучи переходят на соседние пиксели, и образуется всем известный цветовой шум. Именно поэтому при крошечном размере матрицы большое количество мегапикселей может даже вредить качеству.

как улучшить фото на телефоне

как улучшить фото на телефоне

Что такое апертура?

В последнее время стал популярным еще один показатель, указывающий на потенциальную способность камеры делать хорошие снимки. Если говорить по-простому, то апертура являет собой своеобразный «зрачок» камеры. Точно так же, как наш зрачок расширяется или сужается для того, чтобы получить больше или меньше света, так же и апертура может быть определенного размера. Следовательно, от ее величины зависит способность камеры улавливать свет.

Апертура измеряется в f-числах (стопах, как говорят профессионалы). Сами же цифры дробные (например 1.8). Чем меньше этот показатель, тем больше расширяется «зрачок» камеры.

апертура

апертура

Это напрямую влияет на качество снимка. Если света много, то большая апертура способна только испортить кадр. Понять, что будет в результате, очень просто. Попробуйте повернуться спиной к солнцу и сфотографироваться. Вот приблизительно такой снимок можно получить при слишком большой апертуре. Если же этот показатель слишком большой (то есть, размер зрачка маленький), то снимок получится слишком темным. Поэтому данное значение должно подстраиваться под ситуацию.

Советы фотографу

Самое главное — это навыки. Если вы хороший фотограф, то даже с плохой камерой сможете создать шедевр. А вот неумелый новичок сделает ужасный кадр даже на дорогой зеркалке. Вот несколько простых рекомендаций, как выжать максимум из вашей простой камеры:

  1. Не забывайте о необходимости подготовки к съемке. Обязательно протрите объектив, покопайтесь в настройках телефона, поиграйтесь со значениями экспозиции, ISO, балансом белого и другими параметрами. При этом рекомендуется не применять слишком много дополнительных функций к фотографии (типа рамок, фильтров), потому что в случае ошибки переделать результат уже не получится. Если хочется добавить интересный эффект к снимку, лучше сделать это на этапе коррекции.
  2. Избегайте съемки при плохом освещении. Пока что ни один телефон, даже самый дорогой, не научился делать прекрасные снимки в ночное время. Можно, конечно, выставить большой уровень ISO, но в таком случае шума на фото будет тоже очень много.
  3. Лучше более затемненный снимок, чем слишком светлый. Если на фото много теней, коррекция способна на чудеса. А вот восстанавливать детали на месте белых пятен очень тяжело.
  4. Если у камеры плохой автофокус, избегайте фотографирования близких объектов. Попробуйте эту функцию перед тем, как ее
    использовать на практике. Если макросъемка не получается, то пытаться бесполезно.

форматы фото

форматы фото

Итоги: что влияет на качество фото?

Нельзя сказать, что количество мегапикселей не оказывает положительного влияния на качество снимка. Но если максимум, который вам нужен — смотреть фотографии на телефоне и выкладывать их в Instagram, то этот параметр почти ни на что не влияет.

Значительно важнее другие вещи, а именно:

  1. Апертура.
  2. Настройки камеры. Далеко не каждый смартфон будет хорошо фотографировать из коробки при том, что камера довольно неплохая. На этот момент влияет программная часть. Если плохо прописаны алгоритмы автонастройки, то придется все делать вручную. Нужно подружиться с такими понятиями, как ISO, выдержка (экспозиция), фокус.
  3. Навыки фотографирования и обработки снимков. Хороший специалист даже на плохую камеру сделает классный снимок. В крайнем случае — можно откорректировать изображение. Современные приложения способны делать это на высшем уровне, значительно улучшая его качество.

В общем, все эти факторы нужно учесть для того, чтобы создавать шедевры.

phonepress.ru

Сколько нужно мегапикселей в фотоаппарате?

Для новичков и простых любителей фотографии выбор фотоаппарата является весьма нелегким делом, ведь производители предлагают сегодня огромное разнообразие моделей, отличающихся как субъективными параметрами, так и техническими характеристиками. Причем компании-производители в рекламных предложениях, главным образом, напирают на количество мегапикселей в своих камерах.

В результате, рядовые покупатели вынуждены обращать свое внимание на то, сколько мегапикселей в данном фотоаппарате —  7, 8, 10, 12 и так далее. У них складывается впечатление, что чем больше мегапикселей, тем лучше камера. Но так ли это на самом деле? Является ли количество мегапикселей такой уж важной характеристикой фотоаппарата? Попробуем ответить на эти вопросы.

Сколько нужно мегапикселей?

Как известно, пиксели – это точки, которые сохраняют в светочувствительной матрице фотоаппарата информацию в цифровой форме об отдельной части кадра. Поскольку в матрице любой цифровой фотокамеры таких пикселей очень много, то счет идет уже на мегапиксели (мега – миллион). Итак, существует расхожее мнение, что от количества мегапикселей зависит качество получаемого фотоизображения.

В действительности же, количество мегапикселей влияет на максимальный размер фотографии, которую Вы сможете распечатать без потери качества. Любое цифровое устройство, будь то экран персонального компьютера или ноутбук, выводит отснятое фотоизображение в фиксированных размерах.  Поэтому, чтобы качество выводимого на экран изображения было максимально высоким, необходимо его полное соответствие размерам снимка, отснятого фотокамерой. В противном случае Ваш принтер или персональный компьютер начнет подгонять размеры снимка под фиксированные размеры, что, в конечном счете, оборачивается определенной потерей качества.

Сколько же Вам необходимо мегапикселей в фотокамере для того, чтобы, например, без потери качества рассматривать отснятые снимки на экране монитора или распечатывать изображения? Оказывается, что не так уж и много. В частности, при печати стандартной фотографии размером 10х15 Вам понадобится разрешение 1180х1770 пикселей, что соответствует всего двум мегапикселям!

Конечно, лучше иметь разрешение матрицы чуть побольше, на всякий случай, чтобы, например, укрупнить или поменять экспозицию. Таким образом, для печати обычных фотографий для домашнего фотоальбома Вам достаточно будет фотокамеры с матрицей в 3 – 4 мегапикселя. Правда, сейчас таких фотоаппаратов уже нет в продаже.

Для чего же в таком случае производители фототехники делают акцент на количестве мегапикселей и постоянно выпускают все новые модели фотоаппаратов с большим разрешением матрицы? В первую очередь, это хороший маркетинговый ход. Ведь всегда приятно похвастаться перед своими друзьями или знакомыми, что у Вас 12-мегапиксельная камера, в то время как они являются обладателями «какого-то» фотоаппарата с матрицей в 7,1 мегапикселя.

Но все же есть и практическая польза от большого количества мегапикселей. Правда, она проявляется только тогда, когда Вы собираетесь распечатывать фотографии в большом формате – большие плакаты или постеры. Если Вы занимаетесь профессиональной студийной фотографией и часто распечатываете большие фотографии, то здесь можно остановиться на фотокамере с матрицей в 10 – 12 мегапикселей. Итак, чем больше мегапикселей в фотоаппарате, тем меньше ограничений на размер качественного снимка. На качество же фотографий влияют совершенно другие параметры.

Физический размер матрицы фотоаппарата.

На качество получаемых изображений оказывает влияние совершенно другая характеристика, нежели количество мегапикселей в матрице фотокамеры. Это, в первую очередь, физический размер матрицы фотоаппарата. Под физическим размером матрицы понимают геометрические размеры сенсора, то есть его длину и ширину в миллиметрах.

Правда, в описании технических характеристик фотокамеры физический размер матрицы указывается чаще всего в виде дробных частей дюйма, например, 1/2.3″ или 1/3.2″. Чем больше размер матрицы, тем число после дроби меньше. Величина 1/2.5″ соответствует геометрическим размерам сенсора — 4.3х5.8 мм.

На что влияют физические размеры матрицы фотоаппарата? Этот параметр определяет уровень цифрового «шума» и детализацию фотоизображения. Чем больше размеры светочувствительного сенсора, тем больше его площадь и, соответственно, тем больше света  на него попадает. Это позволяет Вам получить качественное изображение с большим количеством деталей и естественными цветами.

Поскольку физические размеры матрицы в компактных фотоаппаратах меньше, чем в более профессиональных моделях камер, то они и проигрывают по качеству получаемых снимков.  Поэтому если Вы выбираете оптимальный вариант камеры из нескольких моделей при одинаковом количестве мегапикселей, то лучше остановиться на том цифровом фотоаппарате, у которого больший физический размер матрицы. Это даст Вам большую свободу при выборе места съемки и снизит уровень «шумов» в условиях недостаточной освещенности.

Не стоит никогда акцентировать свое внимание на количестве мегапикселей в фотокамере. Производители фототехники используют эту характеристику, в первую очередь, как рекламный прием для продвижения своих новых моделей на рынок. Большинство пользователей, кто просто собирается хранить свои снимки в электронном формате и время от времени показывать их знакомым в домашнем фотоальбоме, вполне могут ограничиться покупкой фотокамеры с минимальным количеством мегапикселей, ведь разницу между 7- ми и 12-мегапиксельной камерой они все равно не почувствуют.

С точки зрения качества получаемых фотоизображений, гораздо более важен другой параметр – физический размер матрицы фотоаппарата. На эту характеристику, а также качество оптики и функциональность, и надо ориентироваться при выборе подходящей Вам фотокамеры.

Источник: Фотокомок.ру – учимся фотографировать (при копировании или цитировании активная ссылка на источник

обязательна)

www.fotokomok.ru

Мегапиксель — это… Что такое Мегапиксель?

Мегапиксель (мегапиксел, Мп, англ. megapixel) — один миллион (1 000 000) пикселей, формирующих изображение. В мегапикселях измеряется одна из важных характеристик цифрового фотоаппарата — разрешение матрицы. Также в мегапикселях измеряют размер созданного или отсканированного изображения, чтобы соотнести его размер с размером известного снимка. Термин введен маркетологами фирмы Kodak в 1986 году.[1]

Насколько важно разрешение снимка

Ambox outdated serious.svg
Информация в этой статье или некоторых её разделах устарела. Вы можете помочь проекту, обновив её и убрав после этого данный шаблон.

Мегапиксели — не самое главное в снимке или фотоаппарате. Важным является то, как формируется каждый пиксель. Это может быть отсканированная фотоплёнка, пиксель с матрицы с байеровским фильтром или пиксель с матрицы Foveon X3. В случае цифрового фотоаппарата физический размер матрицы играет ключевую роль: чем он меньше при одинаковом количестве мегапикселей, тем более «шумным» будет снимок.

По состоянию на середину 2008 года, даже в недорогих компакт-камерах стоят матрицы высокого разрешения, превосходящие по своим возможностям маленький объектив. Кроме того, в области любительских фотоаппаратов постоянно растущее разрешение не вызывает соответствующий рост и без того малого физического размера светочувствительной матрицы. Это приводит к сильному повышению уровня шумов на снимках. Программное обеспечение «мыльниц» подавляет возникшие шумы, что, в свою очередь, приводит к «замыленности» снимка. При просмотре таких снимков в масштабе 100 % качество снимка очень невысокое. Нечёткость и «замыленность» несколько ослабляются при уменьшении масштаба просмотра (или печати). При этом теряется необходимость в большом количестве мегапикселей. К тому же разные матрицы, построенные по одному и тому же принципу, обладают различными недостатками. Также современные сканеры при максимальном разрешении по разрешающей способности сильно превосходят пару «плёнка-объектив» и отсканированные при высоком разрешении кадры не будут иметь ожидаемого количества деталей.

Таким образом, количество мегапикселей не является главным показателем качества аппарата.

Дисплеи

В таблице указано количество мегапикселей типичных дисплеев компьютеров и телефонов, а также телевизоров:

УстройствоРазрешениеКоличество мегапикселей
Кнопочный телефондо 240×320до 0,1 Мп
iPhone 4640×9600,6 Мп
Дисплей ноутбука
(типичный на 2011 г.)
1366×7681 Мп
Отдельный монитор для компьютера
(типичный на 2011 г.)
1680×10501.7 Мп
Телевизор NTSC640×4800,3 Мп
Телевизор HDTVдо 1920×1080до 2 Мп
Apple iPad 32048×1536
3.1 Мп
Macbook Pro с Retina-дисплеем2880×18005.2 Мп

Печать фотографий

От количества мегапикселей зависит размер и разрешение фотоснимков.

Желательный размер отпечатков
(см)
Приемлемое разрешение
(количество мегапикселей)
Предпочтительное разрешение
(Количество мегапикселей)
 6×9640×480(0,3 Мп)1024×768 (0,8 Мп)
  9×121024×768 (0,8 Мп)1600×1200 (1,9 Мп)
10×151024×768 (0,8 Мп)1712×1200 (2 Мп)
13×181152×864 (1 Мп)2048×1536 (3,1 Мп)
20×301600×1200 (1,9 Мп)2272×1704 (3,9 Мп)

Если пренебрегать размером фотографий и печатать маленькие фотографии на большой бумаге, то изображение будет получаться менее резким и на контрастных границах будет заметна ступенчатость.

При печати до формата 15×20 для безупречной резкости требуется качество печати 300 ppi (для снимка 10×15 (4×6 дюймов) это 1200×1800 точек). На формате A4 уже не требуется такого разрешения, так как снимок будет рассматриваться с бо́льшего расстояния. Фотомашины для печати крупных форматов обычно имеют разрешение менее 300 ppi, например, Durst Theta 76 имеет всего 254 ppi.

Рекорды

111-гигапиксельный снимок Севильи создан из более 10000 высококачественных цифровых фотографий.

Примечания

Ссылки

dic.academic.ru

Таблица разрешений камер видеонаблюдения

Цель этой статьи — устранить путаницу в обозначениях разрешающей способности камер видеонаблюдения и помочь понять какой объем памяти необходим для записи видео с тем или иным разрешением.

Обозначения качества изображения, применяющееся в стандартах сигналов (IP, HD-TVI, AHD)

Разрешающая способность («разрешение» записи или «размер кадра» видео) определяется количеством пикселей (точек) при оцифровывании изображения (по горизонтали и вертикали соответственно).

Обозначение «Mp, Mpx, Мп» (1 Mp; 1,3 Mpx; 2,1 Мп)

MP – это общее число мегапикселей (миллионов точек), полученное перемножением числа столбцов (точек по горизонтали) на число строк (точек по вертикали). Например, для камеры 1080p: 1920 столбцов умножаем на 1080 строк и получаем 2МР (точнее, 2.07МР, но обычно это обозначают как 2MP или 2.1MP).

Обозначение «р» (720p, 960p,1080p, 2160p)

Число с символом «p» соответствует полному числу строк в данном видео (количество точек в кадре по вертикали). Например, видео, обозначаемое как 720p, содержит 720 строк пикселов (при общей площади 1.3Mp). Видео, обозначаемое как 1080p, содержит 1080 строк пикселов (при общей площади 2.1Mp). Наконец, видео, обозначаемое как 2160p, содержит 2160 строк пикселов (при общей площади 8.3Mp).

Сам по себе значок «р» указывает на прогрессивную развертку (в отличие от чересстрочной). В настоящее время практически все камеры для видеонаблюдения имеют прогрессивную развертку, так что значок «р» в этом смысле уже не играет особого значения.

Обозначения «H и К» (960H, 2K, 4K)

Обозначение «H и K»  указывает на число столбцов (точек по горизонтали), выраженное H — в единицах, К — в тысячах и округленное. Например, видео с обозначение 4K содержит около 4000 столбцов пикселов. Реально видео «4К» содержит или 3840 столбцов, или 4096 столбцов, хотя в видеонаблюдении это почти всегда 3840.

Обозначения качества видео, применявшиеся в устаревших аналоговых системах видеонаблюдения (D1, DCIF, 2CIF, CIF, QCIF, 380ТВЛ, 420ТВЛ, 480ТВЛ, 560ТВЛ, 600ТВЛ, 800ТВЛ, 1000ТВЛ) перевод в мегапиксели и их отличия

ТВЛ (телевизионные линии) — это интересная единица измерения, определяемая по испытательным таблицам в ходе тестирования камер и обозначает количество вертикальных линий (видимых переходов яркости) в кадре. По сути — это количество пикселей по горизонтали кадра, помноженное на коэффициент 0,65 (чтобы учесть неизбежные потери четкости в процессе преобразования и обработки видеосигнала).  Вертикальное же разрешение в пикселях жестко задано количеством строк в телевизионном стандарте (576 в европейском и 480 в американском) и не меняется в зависимости от разрешения камеры, заявленного производителем. Поэтому разрешения более 420 ТВЛ, передаваемые в обычном аналоговом телевизионном стандарте, можно назвать не совсем честными, так как они дают повышенную четкость только по горизонтали.

 

TVL (телевизионных линий) Пиксели (горизонталь x вертикаль) Мегапиксели (Мп, MPx)
380ТВЛ 640×480 px 0,3 Mp
420ТВЛ 720×576 px 0,36 Mp
честное 480ТВЛ 800×600 px 0,5 Mp
честное 560ТВЛ 933×700 px 0,65 Mp
честное 600ТВЛ 1024×756 px 0,75 Mp
честное 800ТВЛ 1280×960 px 1,23 Mp
честное 1000ТВЛ 1600х1200 px 1,92 Mp

 

D1 — «полный» кадр, размер изображения 704х576 — позволяет получить максимальное качество изображения при использовании аналоговой камеры высокого разрешения (более 540 ТВЛ)

DCIF — «расширенный» кадр, размер изображения 528х384. По сравнению с D1 характеризуется 30% потерей исходной информации.

2CIF — «длинный» кадр, размер изображения 704х288 — используется одно поле изображения, но с максимальным разрешением по горизонтали. Характеризуется хорошим горизонтальным разрешением и позволяет почти в 2 раза уменьшить объем создаваемого архива по сравнению с D1. Однако низкое вертикальное разрешение, не позволяет вести видеорегистрацию в узких зонах наблюдения (наблюдение вдоль коридора). Используется в основном при панорамном обзоре.

CIF — «четверть» кадр, размер изображения 352х288 — усеченное поле. Обычно используется только при наблюдении по сети при ограниченной пропускной способностью канала, а также регистрации общей ситуации при малых зонах обзора (от 3 до 5 м). При этом малый объем видеопотока позволяет резко увеличить продолжительность архива.

QCIF — размер изображения 176х144 — используется только при сетевом мониторинге по низкоскоростным каналам связи с потоком до 56-128 Кбит/с. О качестве изображения можно сказать только то, что «видно какое то движение», и более ничего.

Каталог систем видеонаблюлдения

Список всех (основных и промежуточных) форматов видеоизображений с указанием горизонтального и вертикального размера кадра в пикселях и полной площади изображения в килопикселях и мегапикселях

Название формата (стандарта) видео Количество отображаемых в кадре точек Пропорции изображения (соотношения сторон кадра) Размер изображения в килопикселях (тысячах пикселей) и мегапикселях (миллионах пикселей)
QVGA 320×240 4:3 76,8 кпикс
SIF (MPEG1 SIF) 352×240 22:15 84,48 кпикс
CIF (MPEG1 VideoCD) 352×288 11:9 101,37 кпикс
WQVGA 400×240 5:3 96 кпикс
[MPEG2 SV-CD] 480×576 5:6 276,48 кпикс
HVGA 640×240 8:3 153,6 кпикс
HVGA 320×480 2:3 153,6 кпикс
nHD 640×360 16:9 230,4 кпикс
VGA 640×480 4:3 307,2 кпикс
WVGA 800×480 5:3 384 кпикс
SVGA 800×600 4:3 480 кпикс
FWVGA 848×480 16:9 409,92 кпикс
qHD 960×540 16:9 518,4 кпикс
WSVGA 1024×600 128:75 614,4 кпикс
XGA 1024×768 4:3 786,432 кпикс
XGA+ 1152×864 4:3 995,3 кпикс
WXVGA 1200×600 2:1 720 кпикс
HD 720p 1280×720 16:9 921,6 кпикс
WXGA 1280×768 5:3 983,04 кпикс
SXGA 1280×1024 5:4 1,31 Мпикс
WXGA+ 1440×900 8:5 1,296 Мпикс
SXGA+ 1400×1050 4:3 1,47 Мпикс
XJXGA 1536×960 8:5 1,475 Мпикс
WSXGA (?) 1536×1024 3:2 1,57 Мпикс
WXGA++ 1600×900 16:9 1,44 Мпикс
WSXGA 1600×1024 25:16 1,64 Мпикс
UXGA 1600×1200 4:3 1,92 Мпикс
WSXGA+ 1680×1050 8:5 1,76 Мпикс
Full HD 1080p 1920×1080 16:9 2,07 Мпикс
WUXGA 1920×1200 8:5 2,3 Мпикс
2K 2048×1080 256:135 2,2 Мпикс
QWXGA 2048×1152 16:9 2,36 Мпикс
QXGA 2048×1536 4:3 3,15 Мпикс
WQXGA 2560×1440 16:9 3,68 Мпикс
WQXGA 2560×1600 8:5 4,09 Мпикс
QSXGA 2560×2048 5:4 5,24 Мпикс
WQXGA 3200×1800 16:9 5,76 Мпикс
WQSXGA 3200×2048 25:16 6,55 Мпикс
QUXGA 3200×2400 4:3 7,68 Мпикс
QHD 3440×1440 21:9 4.95 Мпикс
WQUXGA 3840×2400 8:5 9,2 Мпикс
Ultra HD 3840×2160 16:9 8,3 Мпикс
4K 4096×2160 256:135 8,8 Мпикс
  4128×2322 16:9 9,6 Мпикс
  4128×3096 4:3 12,78 Мпикс
HSXGA 5120×4096 5:4 20,97 Мпикс
WHSXGA 6400×4096 25:16 26,2 Мпикс
HUXGA 6400×4800 4:3 30,72 Мпикс
Super Hi-Vision 7680×4320 16:9 33,17 Мпикс
WHUXGA 7680×4800 8:5 36,86 Мпикс

 

Какого объема нужен жесткий диск для видеорегистратора?

Руководствуясь таблицей, приведенной ниже, можно посчитать сколько гигабайт в час будут передавать на видеорегистратор все камеры.

Таблица объема (Гб) часа записи камер видеонаблюдения для кодека H.264 при разрешении D1, 1Mp (1280*720), 2Mp (1920*1080), 3Mp(2048*1536), 5M(2560×1920) при частоте кадров 8, 12, 25 к/с и различной интенсивности движения.

Для уменьшения объема хранимой видеоинформации в видеорегистраторах применяются различные алгоритмы ее компрессии.

Основным преимуществом алгоритма H.264 является межкадровое сжатие, при котором для каждого следующего кадра определяются его отличия от предыдущего, и только эти отличия после компрессии сохраняются в архиве. При работе алгоритма периодически в архиве сохраняются опорные кадры (I-кадры), представляющие собой сжатое полное изображение, а затем на протяжении 25-100 кадров сохраняются только изменения, называемые промежуточными кадрами (P- и B-кадрами). Такой способ компрессии позволяет получить высокое качество изображения при малом объеме, но требует большего объема вычислений, чем компрессия в стандарте MJPEG.

При использовании алгоритма MJPEG компрессии подвергается каждый кадр не зависимо от наличия в нем отличий от предыдущего. Поэтому единственным способом уменьшения объема сохраняемых данных является увеличение компрессии и тем самым снижение качества записи. Такой способ используется только в простых автономных видеорегистраторах, не требующих длительного хранения информации.

Еще одним преимуществом алгоритма H.264 является его возможность работы в режиме постоянного потока (CBR — constant bit rate) при котором степень компрессии видеоинформации изменяется динамически и таким образом четко фиксируется объем создаваемого архива за одну секунду. Такая особенность алгоритма позволяет однозначно определить максимальный объем архива за час непрерывной работы системы, а также необходимый сетевой трафик при удаленном доступе.

stavkomvideo.ru

Мегапиксель — Википедия. Что такое Мегапиксель

Мегапиксель (мегапиксел, Мп, англ. megapixel) — один миллион (1 000 000) пикселей, формирующих изображение. В мегапикселях измеряется одна из важных характеристик цифрового фотоаппарата — разрешение матрицы. Также в мегапикселях измеряют размер созданного или отсканированного изображения, чтобы соотнести его размер с размером известного снимка. Термин введен маркетологами фирмы Kodak в 1986 году.[1]

Насколько важно разрешение снимка

Ambox outdated serious.svg

Информация в этой статье или некоторых её разделах устарела.

Вы можете помочь проекту, обновив её и убрав после этого данный шаблон.

Мегапиксели — не самое главное в снимке или фотоаппарате. Важным является то, как формируется каждый пиксель. Это может быть отсканированная фотоплёнка, пиксель с матрицы с байеровским фильтром или пиксель с матрицы Foveon X3. В случае цифрового фотоаппарата физический размер матрицы играет ключевую роль: чем он меньше при одинаковом количестве мегапикселей, тем более «шумным» будет снимок.

По состоянию на середину 2008 года, даже в недорогих компакт-камерах стоят матрицы высокого разрешения, превосходящие по своим возможностям маленький объектив. Кроме того, в области любительских фотоаппаратов постоянно растущее разрешение не вызывает соответствующий рост и без того малого физического размера светочувствительной матрицы. Это приводит к сильному повышению уровня шумов на снимках. Программное обеспечение «мыльниц» подавляет возникшие шумы, что, в свою очередь, приводит к «замыленности» снимка. При просмотре таких снимков в масштабе 100 % качество снимка очень невысокое. Нечёткость и «замыленность» несколько ослабляются при уменьшении масштаба просмотра (или печати). При этом теряется необходимость в большом количестве мегапикселей. К тому же разные матрицы, построенные по одному и тому же принципу, обладают различными недостатками. Также современные сканеры при максимальном разрешении по разрешающей способности сильно превосходят пару «плёнка-объектив» и отсканированные при высоком разрешении кадры не будут иметь ожидаемого количества деталей.

Таким образом, количество мегапикселей не является главным показателем качества аппарата.

Дисплей

В таблице указано количество мегапикселей типичных дисплеев компьютеров и телефонов, а также телевизоров:

УстройствоРазрешениеКоличество мегапикселей
Кнопочный телефондо 640×480до 0,3 Мп
iPhone 4640×9600,6 Мп
Дисплей ноутбука
(типичный на 2013 г.)
1366×7681 Мп
Отдельный монитор для компьютера
(типичный на 2013 г.)
1920×10802 Мп
Телевизор NTSC640×4800,3 Мп
Телевизор HDTV (HD Ready)1280×7200.9 Мп
Телевизор HDTV (Full HD)1920×10802 Мп
Apple iPad 32048×15363.1 Мп
Смартфон LG G3 (Quad HD)2560×14403.7 Мп
MacBook Pro с дисплеем Retina2880×18005.2 Мп
Телевизор UHDTV3840×21608.3 Мп
Стандарт IMAXдо 7680×4320до 33.2 Мп

Печать фотографий

От количества мегапикселей зависит размер и разрешение фотоснимков.

Желательный размер отпечатков
(см)
Приемлемое разрешение
(количество мегапикселей)
Предпочтительное разрешение
(Количество мегапикселей)
6×9640×480(0,3 Мп)1024×768 (0,8 Мп)
9×121024×768 (0,8 Мп)1600×1200 (1,9 Мп)
10×151024×768 (0,8 Мп)1712×1200 (2 Мп)
13×181152×864 (1 Мп)2048×1536 (3,1 Мп)
20×301600×1200 (1,9 Мп)2272×3048 (7,7 Мп)

Если пренебрегать размером фотографий и печатать маленькие фотографии на большой бумаге, то изображение будет получаться менее резким и на контрастных границах будет заметна ступенчатость.

При печати до формата 15×20 для безупречной резкости требуется качество печати 300 ppi (для снимка 10×15 (4×6 дюймов) это 1200×1800 точек). На формате A4 уже не требуется такого разрешения, так как снимок будет рассматриваться с бо́льшего расстояния. Фотомашины для печати крупных форматов обычно имеют разрешение менее 300 ppi, например, Durst Theta 76 (англ.) имеет всего 254 ppi.

Рекорды

320-гигалёх снимок Лондона создан из 48640 высококачественных цифровых фотографий, снятых на Canon 7D в течение трёх дней и обработанных в течение трех месяцев.[2]

См. также

Примечания

Ссылки

wiki.sc

Каково разрешение человеческого глаза (или сколько мегапикселей мы видим в каждый отдельный момент времени)

Очень часто фотографы, а иногда и люди из других специальностей, проявляют интерес к собственному зрению.

Вопрос, казалось бы, простой на первый взгляд… можно погуглить, и всё станет ясно. Но практически все статейки в сети дают либо «космические» числа — вроде 400-600 мегапикселей (Мп), либо это и вовсе какие-то убогие рассуждения.

Поэтому постараюсь кратко, но последовательно, чтобы никто ничего не упустил, раскрыть эту тему.

Начнём с общей структуры зрительной системы

  1. Сетчатка
  2. Зрительный нерв.
  3. Таламус(ЛКТ).
  4. Зрительная кора.

Сетчатка состоит из трёх типов рецепторов: палочки, колбочки, фоторецепторы(ipRGC).
Нас интересуют только колбочки и палочки, так как они создают картинку.

  • Колбочки воспринимают синий, зелёный, красный цвета.
  • Палочки формируют яркостную составляющую с наибольшей чувствительностью в бирюзовом цвете.

Колбочек в среднем 7 млн, а палочек — около 120 млн.

Практически все колбочки расположены в центральной ямке FOVEA (жёлтое пятно в центре сетчатки). Именно fovea отвечает за самую чёткую область зрительного поля.
Для лучшего понимания проясню — fovea покрывает ноготь на мизинце на вытянутой руке, разрешающий угол примерно 1,5 градуса. Чем дальше от центра fovea, тем более размытую картинку мы видим.

Плотность распределения палочек и колбочек в сетчатке.

Палочки отвечают за восприятие яркости/контраста. Наибольшая плотность палочек — примерно по-середине между центральной ямкой и краем сетчатки.

Интересный факт — многие из вас замечали мерцание старых мониторов и телевизоров при взгляде на них «боковым зрением», а когда смотрите прямо, то всё отлично, было, да?)

Это происходит по причине наибольшей плотности палочек в боковой части сетчатки. Чёткость зрения там паршивая, зато чувствительность к изменению яркости — самая высокая.
Как раз эта особенность и помогала нашим предкам быстро реагировать на самые мелкие движения на периферии зрения, чтобы тигры не пооткусывали им задницы)

Итак, что мы имеем — сетчатка содержит суммарно около 130 Мп. Ура, вот и ответ!

Нет… это только начало и цифра далека от верного значения.

Вернёмся снова к центральной ямке fovea.

Колбочки в самой центральной части ямки «umbo» имеют каждая свой аксон (нервное волокно).

Т.е. эти рецепторы, можно сказать, самые приоритетные — сигнал от них почти напрямую поступает в зрительную кору мозга.

Колбочки, расположенные дальше от центра, уже собираются в группы по несколько штук — они называются «рецептивные поля».

Например, 5 колбочек соединяются с одним аксоном, и дальше сигнал идёт по зрительному нерву в кору.

На этой схеме как раз показан случай такой группировки нескольких колбочек в рецептивное поле.

Палочки, в свою очередь, собираются в группы по несколько тысяч — для них важна не резкость картинки, а яркость.

Итак, промежуточный вывод:

  • каждая колбочка в самом центре сетчатки имеет свой аксон,
  • колбочки на границах центральной ямки собираются в рецептивные поля по несколько штук,
  • несколько тысяч палочек соединяются с одним аксоном.

Здесь начинается самое интересное — ~130 миллионов рецепторов превращаются за счёт группировки в 1 миллион нервных волокон (аксонов).

Да, всего один миллион!

Но как же так?!

В фотиках матрицы по 100500 мегапикселей, а наши глаза всё равно круче!

Сейчас и до этого доберёмся)

Значит, 130 Мп превратились в 1 Мп, и мы каждый день смотрим на мир вокруг… хорошая графика, не так ли?)

Есть пара инструментов, помогающих нам видеть мир вокруг почти постоянно почти чётким:

1.Наши глаза совершают микро- и макросаккады — что-то типа постоянных перемещений взгляда.

Макросаккады — произвольные движения глаз, когда человек рассматривает что-то. В это время происходит «буферизация» или слияние соседних изображений, поэтому мир вокруг нам кажется чётким.

Микросаккады — непроизвольные, очень быстрые и мелкие (несколько угловых минут) движения.

Они необходимы для того, чтобы рецепторы сетчатки банально успевали насинтезировать новых зрительных пигментов — иначе поле зрения просто будет серым.

2.Ретинальная проекция

Начну с примера — когда мы читаем что-то с монитора и постепенно крутим колёсико мышки для перемещения текста, то текст не смазывается… хотя должен) Это очень занятная фишка — здесь в работу подключается зрительная кора.

Она постоянно держит в буфере картинку и при резком смещении объекта/текста перед зрителем быстро смещает эту картинку и накладывает на реальное изображение.

А как же она знает, куда смещать?

Очень просто — Ваше движение пальцем по колёсику уже изучено моторной корой до миллиметров… Зрительная и моторная области работают синхронно, поэтому Вы не видите смаза.
А вот когда кто-то другой крутанёт колёсико….:)

Зрительный нерв

С каждого глаза выходит зрительный нерв плотностью ~1 Мп (от 770 тысяч до 1,6 млн пикселей — кому как повезло), дальше нервы с левого и правого глаз пересекаются в оптической хиазме — это видно на первой картинке — происходит смешение аксонов примерно по 53% с каждого глаза.

Потом два этих пучка попадают в левую и правую части таламуса — это такой «распределитель» сигналов в самом центре мозга.

В таламусе происходит, можно сказать, первичная «ретушь» картинки — повышается контраст.

Далее сигнал из таламуса поступает в зрительную кору.

И здесь происходит невероятное количество процессов, вот основные:

  • слияние картинок с двух глаз в одну — происходит что-то типа наложения (1 Мп так и остаётся),
  • определение элементарных форм — палочек, кружочков, треугольников,
  • определение сложных шаблонов — лица, дома, машины и т.д.,
  • обработка движения,
  • покраска картинки. Да, именно покраска, до этого в кору просто поступали аналоговые импульсы разной частоты,
  • ретушь слепых зон сетчатки — без этого мы бы видели постоянно перед собой два тёмно-серых пятна размером с яблоко,
  • ещё уйма «фотошопа»,
  • и наконец, вывод финального изображения — то, что вы и называете зрением — феномен зрения.

Так почему же, спросите вы, мы не видим отдельных пикселей? Картинка должна быть совсем убогая, как на старой приставке!

В этом и заключается суть феноменологии зрения — у вас ОДНА зрительная система. Вы не можете посмотреть на свою же картинку со стороны.

Если бы человек обладал двумя зрительными системами и по желанию мог переключиться с системы 1 на систему 2 и оценить как работает первая система — тогда да, ситуация была бы печальная 🙂

Но имея одну зрительную систему ВЫ сами и являетесь этой картинкой, которую видите!

Зрительная кора сама осознаёт процесс зрения. Перечитайте это несколько раз.
При травме первичной зрительной коры человек не понимает, что он слеп — это называется анозогнозия, т.е. картинку он совершенно не видит, но при этом может нормально ходить по коридору с препятствиями(первая ссылка в списке).

Завершая эту, надеюсь, краткую и понятную статью, хочу напомнить — мы все имеем картинку в ~1 Мп… живите с этим 🙂

Литература:
Дэвид Хьюбел — «Глаз, мозг, зрение»
Стивен Палмер — «От фотонов к феноменологии»
Баарс Б., Гейдж Н. — «Мозг, познание, разум»
Джон Николлс, А. Мартин, Б. Валлас, П. Фукс — «От нейрона к мозгу»
Майкл Газзанига — «Кто за главного?»

Ссылки:

https://www.cell.com/fulltext/S0960-9822(08)01433-4
https://iovs.arvojournals.org/article.aspx?articleid=2161180
https://en.wikipedia.org/wiki/Fovea_centralis
https://en.wikipedia.org/wiki/Photoreceptor_cell

UPD: поступило заметное количество комментариев/вопросов про цветоощущение. Если эта тема интересна — напишите тег #цветоощущение — займусь созданием статьи.

habr.com

Рост мегапикселей и реальное отражение на реальных разменах изображения

Эта статья посвящена соотношению роста количества мегапикселей у фотоаппаратов и росту реальных размеров изображения.

Математика и Мегапиксели. Только для самых пытливых. Хочешь заработать на выходе нового фотоаппарата? Просто добавь пикселей!

Все началось с того, что для обзора YONGNUO LENS EF 50mm 1:1.8 проект Photo Dzen и официальное представительство Canon в Украине предоставило мне фотоаппарат Canon 5Dsr. На то время это был фотоаппарат с самым большим количеством мегапикселей среди всех полноформатных цифровых камер (т.е. среди узкого формата).

Табличку с узкоформатными камерами Nikon & Canon, которые имеют самое большое количеством мегапикселей, можно найти здесь.

С помощью Canon 5Dsr я смог поснимать не только на YONGNUO LENS EF 50mm 1:1.8, но и на Canon EF 24-70 f/2.8L II (обзор которого я подготовить не успел), а также на легендарный Industar-50-2 3,5/50. Мне было интересно, как разрешают все эти объективы такую супер-мегапиксельную камеру. В разрешении, как оказалось, ничего интересного я не нашел, но в то же время наткнулся на один очень интересный нюанс.

Industar-50-2 3,5/50 и Canon EOS 5DSR

Вместе с Canon 5Dsr у меня на обзоре одновременно была и камера Sony a7 II. Ковыряясь в RAW файлах Canon 5Dsr и Sony a7 II я не сразу понял, где же хваленых 50 мегапикселей Canon 5Dsr, или как их почувствовать на ощупь.

Напомню, что Canon 5Dsr на своем сенсоре имеет 50 МП, а линейные размеры изображения в пикселях составляют 8688 Х 5792, что равняется 50.320.896 пикселям (которые и округляются до 50 МП).

Sony a7 II имеет на своем борту 24 МП, а линейные размеры изображения в пикселях составляют 6000 Х 4000, что равняется 24.000.000 пикселям (и соответствует ровно 24 МП без округления).

Важно: физический размер сенсоров данных фотоаппаратов одинаковый и составляет 36 мм на 24 мм. Сенсоры отличаются именно количеством мегапикселей.

Если поделить 50 МП на 24 МП, то мы получим:

50 МП/24 МП=2.08

т.е. 50 МП составляет 208% от 24 МП. Если перефразировать, то 50 МП на 108% больше, чем 24 МП.

Многим кажется что разница вдвое — это очень много, но мы забываем что вдвое увеличивается площадь (количество мегапикселей на сенсоре), а не линейные размеры (ширина и высота изображения).

Количество мегапикселей — это функция площади линейных размеров (ширины и высоты изображения в пикселях). Пользователи часто обращают внимание только на рост мегапикселей, забывая про линейные размеры изображений.

Если визуально пронаблюдать изображения в пропорциях, может показаться, что изображение на 24 МП меньше перед 50 МП не в 2 раза (визуально я бы сказал, что оно меньше примерно в полтора раза).

Важно: картинки, показанные ниже, иллюстрируют соотношения размеров изображений с разных сенсоров, если бы они были просмотрены или отпечатаны с одинаковой плотностью пикселей. Исходный размер изображения можно посмотреть здесь.

Насколько больше изображение с 50 МП по сравнению с 24 МП

Реальное увеличение длины изображения в пикселях составляет всего 45%, а не 100%, как можно ошибочно предположить (когда 50 МП делится на 24 МП).

8688/6000=1.448. Т.е. длина изображения с 50 МП всего на 45% больше, чем длина изображения с 24 МП. То же самое касается и высоты изображения.

Реальное увеличение длины изображения составляет всего 45%

Кстати, разница между 12 МП и 24 МП, тоже, чувствуется не так серьезно, как того хотелось бы. Даже во время обработки и просмотра фотографий в соотношении ‘1 к 1’ сложно сказать, что находится перед моими глазами — 50 МП или 24 МП. Только когда начинаешь перемещаться по кадру с инструментом ‘лупа’, можно заметить, что изображение 50 МП немного больше.

Соотношение размеров изображений с фотоаппаратов Nikon D700, Sony a7 и Canon 5Dsr

Разница между 12 МП (Nikon D700) и 50 МП (Canon 5Dsr)

Из-за того, что площадь растет квадратично, для увеличение ширины изображения в два раза (с 4256 пикселей у Nikon D700, до 8688 пикселей у Canon 5Dsr) количество Мегапикселей пришлось увеличить больше, чем в 4 раза (с 12 МП у Nikon D700 до 50 МП у Canon 5Dsr):

  • Разница в длине: 8688/4256=2.04 раза
  • Разница в количестве: 50 МП/12 МП=4.17 раза

Получается довольно забавно: изображение с 50 МП камеры всего в два раза длиннее, чем с 12 МП камеры.

Парадокс

Мой опыт

Никакого ‘ВАУ!’ от 50 Мп у Canon 5Dsr не произошло. Даже после перехода от изображений на 12 МП к изображениям на 50 МП ничего кардинально не поменялось. Изображение просто стало в 2 раза выше и шире. 2 раза — это очень мало. Что действительно я ощутил от 50 МП — так это подтормаживание моего компьютера во время выполнения одних и тех же операций, которые я провожу с 12 или 24 МП изображениями.

Если говорить грубо, то суть этой статьи такова: при обработке, просмотре и печати фотографий разница в количестве мегапикселей чувствуется не так сильно, как того можно было ожидать.

По теме мегапикселей еще советую заглянуть в разделы ‘Пиксели и субпиксели‘, ‘Гигапиксели‘ и ‘Битва Мегапикселей‘.

Спасибо за внимание. Аркадий Шаповал.

radojuva.com

Станьте первым комментатором

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *