Нажмите "Enter" для пропуска содержимого

Матрицы фотоаппаратов – Фотоматрица — Википедия

Содержание

Матрица фотоаппарата — все самое главное и ничего лишнего

По сравнению с фотокамерами прошлых лет, у цифровых камер очень мало механических узлов. Их заменили электронные компоненты. Остался неизменным только принцип получения фотографии, который заключается в переносе видимого изображения на какой-либо физический носитель. У старых фотокамер это была светочувствительная плёнка, а у современных цифровых устройств – матрица фотоаппарата. Статья может быть полезна тем, кто интересуется фотографией не только, как искусством, но и хочет понять некоторые конструктивные особенности фотокамер и принципы получения изображения.

Формирование изображения в фотокамере

Матрица, фотодатчик, сенсор – это названия одного и того же устройства, входящего в конструкцию фотоаппарата и являющегося его основным элементом. По конструкции матрица это прямоугольная пластинка разных размеров из химически чистого кремния, на которой методом вакуумного напыления организовано большое количество n-p переходов. Эти переходы представляют собой светочувствительные фотодиоды или фототранзисторы. Таким образом, матрица это интегральная микросхема с несколькими миллионами светочувствительных элементов. Когда на фотодиод попадет свет, он преобразуется в электрический сигнал. В зависимости от объекта съёмки количество света может быть большим или меньшим. Электрические потенциалы с матрицы считываются построчно или поэлементно, затем обрабатываются процессором.

Типы матриц

Матрицы фотоаппаратов могут быть изготовлены по разным технологиям и иметь разные размеры. В фотокамерах применяются следующие виды сенсоров:

  • ПЗС;
  • КМОП;
  • Live-MOS;
  • 3 CCD.

ПЗС матрица состоит из полупроводниковых фотодиодов, а считывание электрических потенциалов осуществляется по горизонтальным строкам. Полевые структуры КМОП намного экономичнее, но за счёт электронных преобразований при считывании, качество картинки несколько хуже, чем на матрице ПЗС. Live-MOS является усовершенствованным КМОП сенсором. Его отличают повышенная чувствительность и быстрая передача сигналов. В матрице используется малошумящий усилитель и низковольтное питание. Это разработка Панасоник, которая применяется в фотоаппаратах этой компании, а так же в камерах Leica и Olympus. 3CCD или трёхматричный сенсор обеспечивает высококачественную цветопередачу с малым уровнем шумов. Разделение цветов осуществляется дихроидной призмой маленького размера с записью каждого из основных цветов на отдельную матрицу. К недостаткам системы 3CCD относятся большие размеры устройства и высокая цена камеры.

(adsbygoogle = window.adsbygoogle || []).push({});

Важные характеристики матриц

Полупроводниковая матрица цифрового фотоаппарата имеет ряд основных характеристик, от которых зависит качество изображения. Это следующие параметры:

  1. Размер
  2. Количество пикселей
  3. Чувствительность
  4. Динамический диапазон
  5. Соотношение сигнал/шум

К дополнительным характеристикам относится напряжение питания и энергопотребление. Они не влияют на картинку и в описании фотоаппарата обычно не указываются.

Кроп фактор

Это главный параметр полупроводниковой матрицы. От него, и в меньшей степени от количества пикселей, зависят важнейшие характеристики изображения, снятого камерой. Кроп фактор это цифра, показывающая, на сколько реальная матрица меньше полнокадрового стандарта. Full Frame – это размер матрицы 24 Х 36 мм. Такими сенсорами оснащаются самые дорогие и профессиональные фотоаппараты. Этот размер соответствует кадру на стандартной фотоплёнке. Для снижения стоимости фототехники, а так же для производства компактных и лёгких любительских фотокамер «мыльниц» применяются матрицы маленького размера.

Существует общепринятый ряд форматов светочувствительных матриц. За полнокадровыми матрицами следует размер 16 Х 24 мм, что соответствует кроп-фактору 1,5. Самыми маленькими сенсорами, применяемыми в недорогих фотоаппаратах, являются матрицы с размерами 4,5 Х 3,4 мм. Это кроп фактор 7,6. Они применяются в дешёвых моделях фотокамер, где высокое качество кадра не требуется.

Разрешение, мегапиксели

Количеством мегапикселей обычно хвастаются продавцы фотоаппаратов, когда предлагают товар начинающим фотолюбителям. К этому параметру следует относиться с осторожностью. Кадр цифрового фотоаппарата состоит из миниатюрных полупроводниковых элементов. Каждый пиксель это сверхминиатюрный фотодиод или фототранзистор. Теоретически получается, что чем больше пикселей, тем выше качество изображения, точнее проработка мелких деталей или разрешение. На практике большое количество пикселей повышает качество изображения только на матрицах большого размера.

 Если размер кристалла небольшой, а изготовитель фотоаппаратов сумел разместить на нём большое количество светочувствительных элементов, то качество изображения будет невысоким. Очень важным для матрицы является не только размер отдельных фотоэлементов, но и расстояние между ними. Маленькие расстояния приводят к перегреву матрицы и возрастанию цифрового шума, который характеризуется цветными точками по всему изображению. Кроме того, при сильном диафрагмировании объектива фотокамеры, за счёт дифракции, вокруг элементов изображения будет появляться цветовая окантовка. Поэтому кадр, снятый на фотоаппарате с матрицей 5,4 Х 4,0 мм и 16 Мп, будет гораздо хуже снимка, полученного на камере с размерами матрицы 8,8 Х 6,6 мм и 10 Мп. Считается, что, в камерах, превышение числа мегапикселей свыше 25 будет излишним. Отчасти это связано с разрешением принтеров для фотопечати, когда самые продвинутые модели печатают фотографии с разрешением 9 600 Х 2 400 точек, что соответствует 23,4 мегапикселей.

Светочувствительность

Этот параметр в цифровых фотокамерах является относительной величиной. Кремниевая пластина со светочувствительными элементами имеет постоянную чувствительность. Всё дело в уровнях сигнала, которые поступают с фотодиодов для дальнейшего преобразования. Если на сенсор фотоаппарата поступает мало света, то электрический сигнал с него будет слабым и фотография будет тёмной. Для того чтобы сделать изображение более светлым слабый сигнал можно усилить. Изменяемый коэффициент усиления и является чувствительностью фотоаппарата. Для удобства фотографов чувствительность матрицы выражается в тех же единицах, что и у западного стандарта на фотоматериалы ASA. Соотношение чувствительности ISO и отечественных фотоплёнок выглядит следующим образом:

  • 50 – 45;
  • 64 – 65;
  • 100 – 90;
  • 160 – 130;
  • 320 – 250.

В левой графе величина чувствительности фотоаппарата, а в правой чувствительность фотоплёнки по ГОСТ.

Отношение сигнал/шум

Мелкие цветные точки на изображении возникают от разных причин. Прежде всего, сама матрица даже при отсутствии засветки будет выдавать слабый электрический потенциал. Это и есть шум. Чтобы он не влиял на изображение, уровень полезного сигнала должен намного превышать уровень шума. Шумовые характеристики матрицы повышаются с уменьшением размера пикселя и расстояния между отдельными точками. Поэтому самой некачественной картинкой будет та, которая получена на маленьком сенсоре с большим количеством мегапикселей. Шум фотокамеры заметно возрастает при увеличении коэффициента усиления или чувствительности. Поэтому, если это возможно, рекомендуется снимать на минимальной чувствительности. Отрицательно влияет на качество изображения нагрев матрицы фотоаппарата. Это происходит, когда она постоянно работает, выводя изображение на дисплей. Профессионалы стараются работать с оптическим видоискателем фотокамеры. В этом случае питание на матрицу подаётся только на очень короткое время, и она не успевает нагреться.

Динамический диапазон

Этот параметр определяется промежутком между минимальным и максимальным значением экспозиции, которые отчётливо видны на снимке. Если у фотоаппарата указан динамический диапазон 8 ступеней или EV, то на снимке будут видны объекты, отличающиеся по яркости в 256 (28) раз. Все предметы, яркость которых выше, получатся совершенно белыми. Нижний порог определяется уровнем шумов самой матрицы, а верхний максимальным электрическим зарядом фотодиода.

Какой фотоаппарат выбрать

При желании снимать всё подряд, не задумываясь о высоком качестве снимка, можно приобрести любой фотоаппарат типа компакт или «мыльница». Отсутствие ручных режимов, большое количество сюжетных программ и фокусировка на лица, делает такой фотоаппарат простым в обращении и удобным для бытового использования. Для получения качественных снимков подойдёт недорогой фотоаппарат с матрицей большего размера и с возможностью ручной установки некоторых параметров съёмки. Ещё больше возможностей предоставляет пользователю беззеркальная камера «суперзум». Обладая небольшими размерами, она позволяет снимать интересные сюжеты на большом удалении от объекта съёмки, поэтому подойдёт для туристов и путешественников. Самые качественные снимки получаются с помощью зеркальной камеры, хотя её применение ограничивается большими размерами и весом. Если Вы хотите узнать все нюансы выбора фотокамеры, наши эксперты подготовили подробные инструкции в статье как выбрать фотоаппарат.

Итоги

При выборе фотоаппарата следует сначала ориентироваться на размер матрицы. Не стоит гнаться за большим количеством точек на изображении. 12-16 Мп более чем достаточно для получения и печати фотографий хорошего качества. Цифровой зум для камеры не слишком важен, так как он только позволяет растянуть центральную часть изображения на весь экран с ухудшением качества. Многие параметры не указываются в спецификации на фотоаппарат, поэтому перед выбором модели неплохо почитать отзывы фотолюбителей на специальных сайтах.

my-photocamera.ru

Матрицы для камер видеонаблюдения. На что обращать внимание? / Habr

Качество изображения видеокамеры во многом зависит от используемого в ней светочувствительного сенсора (матрицы). Ведь поставь хоть лучший процессор для оцифровки видео – если на матрице получено плохое изображение, хорошим оно уже не станет. Попытаюсь популярно объяснить, на что следует обращать внимание в характеристиках сенсора камеры видеонаблюдения, чтобы потом не было мучительно больно при взгляде на изображение…

Тип матрицы

В интернете вы наверняка найдете информацию о том, что в камерах видеонаблюдения применяются CCD (ПЗС, прибор с зарядовой связью) и CMOS (КМОП, комплементарная структура металл-оксид-полупроводник) светочувствительные матрицы. Забудьте! Давно остался только CMOS, только хардкор.

CCD матрицы, при всех их достоинствах (лучшая светочувствительность и цветопередача, меньший уровень шумов) – уже практически не используются в видеонаблюдении. Потому что сам принцип их действия CCD матриц – последовательное считывание заряда по ячейкам – слишком медленный, чтобы удовлетворить запросы быстрых современных видеокамер высокого разрешения. Ну и самое главное CCD дороже в производстве, а в условиях современной высококонкурентной среды на счету каждая копейка прибыли. Вот почему все ключевые производители сосредоточились на выпуске именно CMOS матриц.

Осталось производителей, между прочим, не так и много. Крупнейшими, по состоянию на начало 2017 года, являются компании: ON Semiconductor Corporation (в свое время поглотившая известную профильную компанию Aptina), Omnivision Technologies Inc., Samsung Electronics и Sony Corporation. Кроме того, матрицы для собственных нужд производит, например, компания Canon, Hikvision.

Конкуренцию старым брендам пытаются создать молодые, полные энтузиазма и денег китайские чипмейкеры «второго эшелона», вроде компании SOI (Silicon Optronics, Inc.) и др. Трудно сказать, выживет ли молодая поросль, когда на рынке CMOS сенсоров наступит насыщение и станет слишком тесно. Но в любом случае в этом сегменте не исключено появление новых игроков и обострение борьбы, ведь наладить производство CMOS сенсоров не слишком и сложная по современным меркам задача.

Крупные мировые бренды типа Hikvision или Dahua обычно предпочитают работать с производителями матриц первого эшелона или собственными. Локальные же ведут себя по разному. Например, Tecsar даже в недорогих камерах использует матрицы с хорошей репутацией от ON Semiconductor, Omnivision и Sony. В в ассортименте других “народных” марок, например Berger, широко представлены сенсоры SOI и т.д.


Как делаются матрицы цифровых камер

Лидерские качества CMOS

CMOS технология предусматривает размещение электронных компонентов (конденсаторов, транзисторов) непосредственно в каждом пикселе светочувствительной матрицы.

Структура пикселя и CMOS матрицы

Это уменьшает полезную площадь светочувствительного элемента и снижает чувствительность, плюс активные элементы повышают уровень собственных шумов матрицы. Зато технология позволяет осуществлять преобразование заряда светочувствительного элемента в электрический сигнал прямо в матрице и гораздо быстрее сформировать цифровой сигнал изображения, что критично для видеокамер. Именно поэтому CMOS лучше подходят для камер видеонаблюдения, где требуется быстрая смена кадров.


Принцип работы CCD и CMOS матриц

Плюс возможность произвольного считывания ячеек CMOS матрицы дает возможность буквально «на лету» изменять качество и битрейт получаемого видео, что невозможно для CCD. А энергопотребление CMOS-решений ниже, что тоже немаловажно для компактных камер наблюдения.

Да будет цвет

Для получения цветного изображения матрица разлагает световой поток на составляющие цвета: красный, зеленый и синий. Для этого используются соответствующие светофильтры. Разные производители варьируют размещение и количество светочувствительных элементов разного цвета, но суть от этого не меняется.

Принцип формирования изображения на светочувствительной матрице:

Р – светочувствительный элемент
Т — электронные компоненты

Как устроен и работает КМОП сенсор камеры можно также посмотреть на этом видео от Canon:

CMOS матрицы всех производителей базируются на вышеописанных общих принципах, отличаясь лишь в деталях реализации на кремнии. Например, в погоне за дешевизной и сверхприбылью, чипмейкеры стараются выпускать матрицы как можно меньшего размера. Расплата за это неизбежна…

Почему большой – это хорошо

Типоразмер (или другими словами формат) матрицы обычно измеряют по диагонали в дюймах и указывают в виде дроби, например 1/4″, 1/3″, 2/3″, 1/2 дюйма и др.

Первое правило выбора лучшей матрицы довольно простое: при одинаковом количестве пикселей (разрешении), чем больше физические размеры сенсора – тем лучше. У большей матрицы крупнее пиксели, а значит, она улавливает больше света. Пиксели большей матрицы расположены менее тесно, а значит меньше влияние взаимных помех и ниже уровень паразитных шумов, что напрямую влияет на качество получаемого изображения. Наконец, более крупная матрица позволяет получить большие углы обзора при использовании объектива с одним и тем же фокусным расстоянием!


Светочувствительная матрица производства ON Semicondactor для камер видеонаблюдения

Светочувствительная матрица, установленная на плате видеокамеры

Увы, большеформатные матрицы в массовых камерах видеонаблюдения сейчас практически не используются в силу дороговизны и самих матриц, и объективов для них, которые должны иметь более крупные линзы и, соответственно, габариты и стоимость. На сегодня в камеры устанавливают в основном матрицы типоразмера 1/2″ – 1/4″ (это самые крошечные). Выбирая камеру, нужно четко понимать, что покупая ультрадешевую модель с 1/4″ матрицей производства SOI и крохотным объективом с пластиковыми линзами сомнительной прозрачности, вы не сможете создать систему видеоконтроля приемлемого качества, на которой можно было бы хорошо различать небольшие детали отснятых событий, особенно при съемке в условиях слабой освещенности.

Выбирая же камеру с матрицей Sony типоразмера 1/2.8″ вы априори получите гораздо лучший результат по качеству видео, камеру с такой матрицей уже вполне можно использовать в профессиональной системе видеонаблюдения. И чувствительность у такой камеры будет заведомо выше, что позволит лучше снимать в условиях слабой освещенности: в плохую погоду, в сумерках, в полутемном помещении и т.п. С увеличением разрешения при том же размере матрицы светочувствительность падает, и это тоже нужно учитывать при выборе. Для камеры, установленной в темной подворотне у черного хода, имеет смысл выбрать матрицу с меньшим разрешением и более высокой чувствительностью, чем камеру ультравысокого разрешения с низкой чувствительностью матрицы на которой из-за шумов ничего нельзя будет толком различить.

Светочувствительность

Светочувствительность матрицы определяет возможность ее работы в условиях слабого окружающего освещения. С точки зрения физики это выглядит совсем банально: чем меньше световой энергии достаточно для получения изображения матрицей, тем выше ее светочувствительность. Но! Будем откровенны, гнаться за высокой чувствительностью уже особо не стоит. Дело в том, что современные камеры видеонаблюдения благополучно переходят в режимы «день/ночь», при снижении освещенности переводя матрицу в режим черно-белого изображения с более высокой чувствительностью. Плюс автоматическое включение инфракрасной подсветки дает камерам возможность отлично снимать даже в полной темноте. Например, в закрытом помещении без окон и с выключенным светом, когда об уровне какой-то внешней освещенности даже речи нет. Светочувствительность остается критичной для камер лишенных ИК подсветки, но использовать такие в современном видеонаблюдении – почти моветон. Хотя корпусные модели без подсветки все еще продаются, конечно.


Сравнение матриц разных производителей

Вообще правило таково: чем выше освещенность, тем лучше снимет матрица и, соответственно, камера. Поэтому не рекомендуется ставить камеры по полутемным закоулкам, даже если у них хорошая чувствительность. Имейте в виду, что в спецификации матриц камер обычно указывается минимальный уровень освещенности, когда можно зафиксировать хоть какое-то изображение. Но никто не обещает, что это изображение будет хотя бы приемлемого качества! Оно будет отвратительным в 100% случаев, на нем с трудом можно будет что-либо разобрать. Для достижения хотя бы удовлетворительного результата рекомендуется снимать как минимум при освещенности хотя бы в 10-20 раз большей, чем минимально допустимая для матрицы.

Производители придумали ряд технических решений, чтобы улучшить чувствительность CMOS матриц и снизить потери света в процессе фиксации изображения. Для этого в основном используется один принцип: вынести светочувствительный элемент как можно ближе к микролинзе матрицы, собирающей свет. Сначала компания Sony предложила свою технологию Exmor, сократившую путь прохождения света в матрице:

Затем прогрессивные производители дружно перешли на использование матриц с обратной засветкой, позволяющей не только сократить путь света сквозь матрицу, но и сделать полезную площадь светочувствительного слоя больше, разместив его над другими электронными элементами в ячейке:

Технология обратной засветке дает камере максимальную чувствительность. Отсюда вывод – «при прочих равных условиях» лучше приобрести камеру использующую матрицу с обратной засветкой, чем без таковой.

Для улучшения изображения в условиях слабого освещения для слабочувствительных дешевых матриц производители камер могут использовать различные ухищрения. Например, режим «медленного затвора», а говоря проще – режим большой выдержки. Однако «размазывание» контуров движущихся объектов уже на этапе фиксации изображения матрицей в таком режиме не позволяет говорить о мало-мальски качественной видеосъемке, поэтому такой подход совершенно неприемлем в охранном видеонаблюдении, где важны детали.

Определенным прорывом в качестве изображения стало появление технологии Starlight, впервые появившейся в камерах Bosch в 2012 году. Эта технология, благодаря комбинации огромной светочувствительности матрицы (порядка 0,0001 — 0,001 люкс) и очень эффективной технологии шумоподавления позволила получать очень качественное цветное изображение с видеокамер в условиях слабой освещенности и даже в ночное время.

Тогда как традиционный способ преодоления слабой освещенности – использование ИК подсветки – дает возможность получить четкое изображение лишь в монохромном режиме (оттенках серого), камеры с технологией Starlight позволяют получить цветную картинку, обладающую гораздо большей информативностью. В частности, при слабой освещенности система видеонаблюдения с технологией Starlight легко сможет различать цвета автомобилей, одежды и др. важные признаки.

Вот демонстрация технологии Starlight в действии:

Итоги

При выборе камеры видеонаблюдения обязательно обращайте внимание на характеристики матрицы, а не только ее разрешение. Ведь от этого в значительной степени будет зависеть качество изображения, а следовательно и полезность камеры. В первую очередь следует обращать внимание на надежный бренд, типоразмер и разрешение матрицы, светочувствительность принципиальна лишь для камер лишенных ИК-подсветки.

Очень рекомендую брать камеру с матрицей, по которой можно найти вменяемый даташит с подробной информацией, а не покупать кота в мешке. Например, вы легко найдете спецификации на матрицы производства ON Semiconductor, Omnivision или Sony. А вот мало-мальски подробных характеристик матриц SOI не сыскать днем с фонарем. Возникает подозрение, что производителю есть что скрывать…

А общий итог такой: CMOS матрицы безоговорочно победили в устройствах видеонаблюдения и в ближайшем будущем не собираются сдаваться какой-либо конкурирующей технологии.

habr.com

Таблица характеристик матриц цифровых фотоаппаратов

От редакции сайта Vt-tech.eu

Автор данной статьи — Владимир Медведев. Статья была опубликована на личном сайте автора по адресу:
vladimirmedvedev.com/dpi.html
Однако, автор решил полностью переделать сайт и статья пропала.
Статья очень хорошо и доступно раскрывает тему дифракции при высоких значениях диафрагмы, поэтому редакция сайта Vt-Tech никак не могла пройти мимо. Мы извлекли статью из архивов кэширующих сайтов и выложили здесь.

При экспорте статьи немного пострадали картинки: не все изображения из первоначальной статьи доступны.

Надеемся, что автор статьи не будет возражать против размещения её здесь.

Кто здесь

Эту таблицу я сделал уже много лет назад, для наглядного сравнения цифровых фотоаппаратов. В те годы было много путаницы даже с понятием «кропа» и «полного формата», не говоря уже про компактные и среднеформатные аппараты. Скудная информация была разбросана по многочисленным сайтам производителей фототехники, и сравнить камеры наглядно было практически невозможно. Всё это вводило в заблуждение многих фотолюбителей, разжигая яростные споры на профильных форумах.

Чтобы как-то упорядочить ситуацию и привести к одному знаменателю любые камеры — от мыльниц до среднеформатных камер, я решил использовать понятие плотности пикселей — DPI (хотя, возможно, будет правильней сказать ppi). Почему я выбрал именно этот параметр, который раньше нигде не использовался для этого? Просто потому, что имевшаяся в открытом доступе информация, позволяла рассчитывать его идеально точно, без погрешностей. Зная длину и ширину матрицы, а также количество пикселей, я мог без труда, абсолютно точно рассчитать их плотность. В качестве бонуса, понятие плотности пикселей, позволило сравнить матрицу любого размера с разрешением сканов с плёнки (DPI цифрового фотоаппарата и установленное DPI во время сканирования — по сути, одно и то же).

Удобная в использовании, наглядная таблица, позволила двигаться дальше, по пути познания технических характеристик матриц, и, со временем, обросла массой дополнительных «полезностей». Сегодня в таблице собраны самые разные параметры, имеющие отношение к матрицам цифровых фотоаппаратов. Это и размер пикселя, и точный кроп-фактор, и площадь матрицы, и дифракционное ограничение диафрагмы. С помощью этой таблицы можно легко отслеживать тренды развития фототехники, прогнозировать грядущие изменения или просто выбирать камеру.

Разобраться в многочисленных параметрах таблицы сходу не так просто. Помочь фотографу в этом должны специальные статьи, сопровождающие таблицу, раскрывающие её особый смысл.

Приятного чтения!

Часть первая. Увеличивает ли кроп-фактор способность объективов «приближать»?

Поскольку я занимаюсь фотографией дикой природы, часто бывает просто невозможно подойти ближе к объекту съёмки (из-за риска испугать животное или птицу). И тут во всесь рост встаёт проблема нехватки фокусного расстояния объективов (говоря простым языком — способности оптики «приближать удалённые объекты»). На заре цифровой фотографии, было крайне распространено мнение, что камеры с «кропнутой» матрицей увеличивают фокусное расстояние объективов в кроп раз. Тут я постараюсь объяснить, почему неправильно так думать.

Сейчас у меня есть две камеры. Одна полноформатная — Canon EOS 5D Mark II, вторая с кроп-фактором 1,6х — Canon EOS 20D. Кроп-фактор 1,6, означает, что диагональ матрицы 20D в 1,6 раза меньше, чем диагональ матрицы 5D MarK II. 43mm разделить на 27mm равно 1,6.

С кроп-фактором разобрались. Матрица уменьшилась. Но оптика то осталась прежней. Объектив, например, 300мм подходит как к 20D, так и к 5D Mark II. Что будет, если один и тот же кадр снять на 5D Mk II и на 20D? Самая наглядная и точная метафора — взять большой напечатанный кадр, и вырезать из него середину ножницами. Какая разница, резать матрицу или уже готовый кадр? Вот так:

Конечно, на вырезанном кадре птица выглядит крупнее. Часто, начинающими фотографами, это свойство кропа ошибочно воспринимается как плюс. Но на самом деле, плюсом вовсе не является. Зачем спешить, и «вырезать кадр» до съёмки? А если птица подлетит ближе, или нам захочется вырезать не середину, а край снимка? На полноформатной матрице мы можем резать как угодно, а можем вообще не резать. А вот кроп вариантов уже не оставляет. Вылезшие за край кадра крылья уже не вернуть, и потенциально хороший снимок отправляется в корзину.


примеры основных кроп-факторов: 1.3х, 1.6х и 2х

Спорить, что лучше, кроп или полный формат я тут не стану. Кроп может быть дешевле или быстрее. Тут у каждого своё решение. Вместо ненужных споров, предлагаю ответить на вопрос, какая характеристика камеры может по-настоящему способствовать качественному приближению? И ответ прост — плотность пикселей (столбик dpi в таблице). Для того, чтобы понять, почему это так, давайте рассмотрим ещё один пример из жизни. В этот раз, для удобства, возьмём две полноформатные камеры — 5D и 5D Mark II. Особо подчеркну, что для конечного результата совершенно не важно, полный формат у нас или кроп, тут играет роль только один параметр — плотность пикселей. У 5D это 3101 dpi, у 5D Mark II — 3955 dpi.

Представьте сафари: яркий солнечный день, низкая чувствительность ISO, отличная оптика. И вдруг мы видим дикого леопарда в 100 метрах от нас. Делаем снимок, и зверь скрывается. 100 метров — это далеко. Для того, чтобы кадр хорошо смотрелся, нам волей-неволей придётся сильно кадрировать, оставив 1/10 от полного кадра (для простоты подсчёта). Математика подсказывает, что кадр с камеры 5D (12мп) после кадрирования будет состоять из 1,2мп (12 разделить на 10), что очень мало и не годится для качественной печати. А вот снимок с 5D MII (21мп) будет состоять из 2,1 мп, что уже значительно лучше! И я ещё раз хочу подчеркнуть — совершенно не важно, кроп у нас, или полный формат. 20D, у которой плотность 3955dpi (как и у 5D Mark II), аналогичный кадр, в тех-же самых условиях, тоже состоял бы из 2,1 мп. Несмотря на то, что матрица там всего 8 мегапикселей. Тут играет роль только плотность пикселей.

Леопарда снять одновременно с двух камер не представляется возможным, поэтому я попробовал тест попроще, чтобы наглядно показать разницу от плотности пикселей. Два тестовых кадра, были сняты со штатива, с одинакового расстояния, с одинаковой оптики, с одинаковым фокусным расстоянием:


полный кадр выглядел так


при очень сильном приближении становится видна разница

Это не сравнение 450D против 1D Mark III. Это сравнение 3514 dpi против 4888 dpi. В этих условиях, аналогичный результат будет на любой другой паре камер с подобной плотностью пикселей. Просто когда я писал статью, у меня были именно эти две камеры, вот и всё.
Ps:

  1. Тесты проводились в хороших условиях, и рассматривались под большим увеличением. В реальной жизни, скорее всего, разница будет заметна ещё меньше. Стоит оно того или нет, решать только вам.
  2. Разумеется, качество 21 мегапикселя 5D Mark II, в сравнении с 12 мегапикселями 5D, будет заметно не только при сильном кадрировании. Надеюсь, это и так всем понятно.

Часть вторая. Меньше пиксель — больше шум

Из первой части можно сделать вывод — давайте наращивать плотность пикселей, что бы картинка была лучше. Но не всё так просто. Чем больше плотность пикселей, тем меньше площадь каждого конкретного пикселя (такой столбик тоже есть в таблице). Чем меньше площадь пикселя, тем меньше фотонов света он улавливает. Фотоны — это полезный сигнал. Чем их меньше, тем хуже соотношение сигнал/шум, тем хуже чувствительность камеры.

Скажу просто — камеры, которые мне приходилось тестировать, с размером пикселя менее 6 микрон, имеют плохую чувствительность и более высокий шум. Это моё мнение, мой опыт. Пока что никаких исключений в этом правиле я не видел. Возможно, когда-нибудь, технологии позволят делать новые камеры более чувствительными, но пока так. Возникает вопрос, что выбрать? Плотность пикселей или чувствительность? Тут всем придётся искать свой собственный ответ. Кому интересно моё мнение, смотрите следующие два абзаца, но… никому его не навязываю. 🙂

Я проанализировал свои снимки, за последние несколько лет, размышляя, может ли большая плотность пикселей увеличить качество моих снимков. Результат оказался очень неожиданным: снимков, качество которых можно улучшить за счёт плотности пикселей, оказалось крайне мало. Помимо моих кривых рук, виной тому стали многие естественные факторы — шумы, шевелёнка, качество оптики, «воздух», не точный АФ и пр. Причём, 90% снимков, которые можно было бы улучшить повышенной плотностью пикселей, в улучшении и не нуждались — все они и так обладали достаточным качеством.

Показательно, что большая часть некачественных фотографий страдала из-за недостатка чувствительности. Шевелёнка и шумы мне, как фотографу дикой природы, сейчас мешают гораздо сильнее. 16-25 мегапикселей на полном формате — мой идеал на сегодняшний день.

Также не стоит забывать про ДД — динамический диапазон, который очень тесно связан с шумами, т.к. они ограничивают его в тенях. Меньше пиксель — меньше и ДД. Выводы тут каждый сам для себя сделает. А тех, кому важнее окажется плотность пикселей, я хочу предупредить об ещё одном коварном враге, который будет вечно подстерегать Вас, и от которого Вам не скрыться. По крайней мере в этой Вселенной. Это дифракция…

Часть третья. Дифракция в фотографии. Теория

Для этой части моей статьи все рисунки взяты из
замечательного учебного пособия про дифракцию:
Tutorials: difraction & photography. Очень рекомендую
его всем, кто хочет глубоко разобраться в этой теме.

В этой части матрица ни причём, а отдуваться всё равно приходится. За физику. Какое отношение имеет дифракция к матрице цифрового фотоаппарата? Никакого. Но давайте рассмотрим, что же мы имеем ввиду под словом дифракция, когда говорим о головной боли фотографов?

Если не вдаваться в подробности, то дифракция — это физическое явление, которое мешает нам сильно закрывать диафрагму, снижая качество получаемого изображения.

Если рассмотреть причины дифракции, то мы увидим, что появляется она при прохождении света через диафрагму. После прохождения диафрагмы, лучи идут уже не столь прямо, как нам хотелось бы, а немного «расслаиваются», расходятся в стороны. В результате каждый лучик образует на поверхности матрицы не просто точку, а «кружок и круги по воде» — дифракционные кольца, или, как это ещё называют диск Эри (по фамилии учёного, английского астронома — George Biddell Airy):


Разумеется, что, в отличие от хорошо сфокусированной точки, подобные диски могут залезть на соседние пиксели, если те расположены достаточно плотно. А когда они лезут на соседние пиксели, мы прощаемся с хорошей резкостью.

Давайте рассмотрим это явление на примере. Зная размер пикселей, мы без труда построим сетку, обозначающую границы пикселей (пунктиром). Далее по формуле мы вычисляем диаметр диска Эри и для упрощения представляем его в виде пятна света. И попробуем наложить диски Эри, характерные для самых распространённых диафрагм, на нашу сетку. Для примера я взял размер пикселя камеры 5D MarkII, а значения диафрагм указаны под каждым рисунком:

Как вы видите, при неизменной сетке пикселей кружок Эри растёт. При f/16 он уже значительно залезает на соседние пиксели, что в реальной жизни будет размывать картинку, не давая нам попиксельной резкости. А при f/22 этот диск занимает почти всю площадь 9 пикселей!
Зная размеры этого кружка, я могу рассчитать максимально закрытую диафрагму, после которой дальнейшее закрытие, будет ухудшать фотографию. Этот параметр мой коллега с the-digital-picture.com называет DLA (diffraction limited aperture), что соответствует русскому термину ДОД (дифракционное ограничение диафрагмы). Однако мои расчёты числового значения этого параметра несколько отличаются от вычислений автора вышеуказанного сайта. Например, в своей формуле он, видимо, каким-то образом учитывает и размер всей матрицы (в частности, при равной плотности пикселей, значения DLA 40D (f/9.3) и 1D MarkIV (f/9.1) различаются). Это, конечно же, не может быть верным, когда мы говорим о дифракции на уровне пикселей. Впрочем, наши результаты не сильно расходятся, так что разницей можно принебречь. К тому же, в силу сочетания очень многих факторов (нечеткость границ диска, сложная структура ячеек матрицы и пр.), невозможно с абсолютной точностью назвать величину DLA, после которой начинает наблюдаться деградация изображения.
Итак, давайте посмотрим, как это работает. Для 5D MarkII (как и для 20D), DLA составляет f/10,8, что очень близко к рисунку выше с подписью f/11. В то же время, для Canon 1D (всего 4 mp, — самые крупные ячейки матрицы среди всех камер Canon), этот параметр составляет f/19,1. Давайте закроем диафрагму до f/16, и посмотрим, как будет выглядеть диск Эри, спроецированный на сетку пикселей 1D и на сетку 5D MarkII (или 1Ds MarkIII или 20D):

Как видно из этого примера, что позволено Юпитеру, не позволено быку. При съёмке на 1D мы легко можем закрыть диафрагму до f/16, а на 5D Mark II это приведёт к снижению возможной детализации.

Часть четвёртая. Дифракция в фотографии. Практика

Выше была лишь сухая теория. Она абсолютно верна, но не учитывает того, что оптика очень часто не способна выдать достаточной детализации, на диафрагмах уже DLA. Так как же дело обстоит на практике?
Действительно, оптика не всегда даёт качество, которое позволило бы нам видеть попиксельную резкость. Более того, как мы знаем, качество изображения растёт по мере закрытия диафрагмы. Из-за этого у качественной оптики мы можем заметить ухудшение качества из-за дифракции на диафрагмах близких к DLA, а вот у плохих это может произойти на значительно позже. Однако, если ухудшение наступает на одно или даже два значения диафрагмы уже DLA, это означает, что матрица камеры с этим объективом никогда не получает достаточно детаелй. Т.е. попиксельной резкости там не будет никогда, иначе дифракцию мы бы смогли заметить на уровне числового значения DLA.

Что же мы можем наблюдать на камерах с большой плотностью пикселей? Для примера возьмём новую (на момент написания этих строк) камеру Canon EOS 7D. DLA там составляет f/7,2. Что это значит? Это значит, что 7D сможет выдать попиксельную детализацию только на диафрагмах менее 7,2. Возьмём хорошую оптику и посмотрим на результат. Для этого обратимся за помощью к ресурсу The Digital Picture. Там мы можем найти снимок специальной тестовой таблицы на камеру 7D с использованием хорошей оптики (Canon EF 200mm f/2.0L IS USM). Сравним кадр, сделанный при диафрагме 5,6 и 8. Как мы видим, резкость незначительно ухудшается — теория работает! Теперь сравним 5,6 и 11 — вот тут уже идёт заметное падение резкости, причём не только по центру, но даже в углах!
Весь парадокс камер с высокой плотностью пикселей, что оптике и так сложно передать значительное количество деталей, а передать значительное количество деталей на диафрагмах шире, чем f/8… боюсь это задача лишь для действительно великолепных объективов. Таких, как Canon EF 200mm f/2.0L IS USM ~ за 6000$…

В заключение, для невнимательных читателей, я хочу ещё раз подчеркнуть, что дифракция не является параметром матрицы, искажает изображение до матрицы и не зависит от марки камеры (а если и зависит, разница минимальна и я её не учитываю).

Благодарю Дмитрия (Доктор Ктулху) за помощь, оказанную в процессе редактирования текста статьи.

Таблица характеристик матриц цифровых фотоаппаратов

Модель Произв Тип Mp* Кроп-фактор Размер пикселя (микрон) Площадь (мм2 ) Размер матрицы (мм) Размер матрицы
(пикселей)
DPI DLA** FF***
(mp)
C a n o n
1D Kodak CCD 4,1 1.3 х 11,6 µm 548,2 28,7 x 19,1 2464 x 1648 2181 f/19,1 6,4
D30 Canon CMOS 3,1 1.6 х 10,5 µm 342,8 22,7 x 15,1 2160 x 1440 2417 f/17,6 7,8
1Ds Canon CMOS 11,0 1.0 х 8,8 µm 852 35,8 x 23,8 4064 x 2704 2883 f/14,8 11,1
1D Mark II Canon CMOS 8,2 1.3 х 8,2 µm 548,2 28,7 x 19,1 3504 x 2336 3101 f/13,8 12,9
5D Canon CMOS 12,7 1.0 х 8,2 µm 852 35,8 x 23,9 4368 x 2912 3101 f/13,8 12,9
300D/D60/10D Canon CMOS 6,3 1.6 х 7,4 µm 342,8 22,7 x 15,1 3072 x 2048 3400 f/12,4 15,5
1Ds Mark II Canon CMOS 16,6 1.0 х 7,2 µm 864 ~ 36 x 24 4992 x 3328 3514 f/12,1 16,5
1D Mark III Canon CMOS 10,1 1.3 х 7,2 µm 525,5 28,1 x 18,7 3888 x 2592 3514 f/12,1 16,5
1D x Canon CMOS 17,9 1.0 х 6,9 µm 864 36 x 24 5184 x 3456 3657 f/11,7 17,9
350D/20D/30D Canon CMOS 8,2 1.6 х 6,4 µm 337,5 22,5 x 15,0 3504 x 2336 3955 f/10,8 20,9
5D II / 1Ds III Canon CMOS 21,0 1.0 х 6,4 µm 864 ~ 36 x 24 5616 x 3744 3955 f/10,8 20,9
5D III Canon CMOS 22,1 1.0 х 6,25 µm 864 36 x 24 5760 x 3840 4064 f/10,6 22,1
1000D/400D/40D Canon CMOS 10,1 1.6 х 5,7 µm 328,6 22,2 x 14,8 3888 x 2592 4455 f/9,6 26,6
Canon EOS 1D Mark IV Canon CMOS 16,1 1.3 х 5,7 µm 518,9 27,9 x 18,6 4896 x 3264 4455 f/9,6 26,6
Canon EOS 450D Canon CMOS 12,2 1.6 х 5,2 µm 328,6 22,2 x 14,8 4272 x 2848 4888 f/8,7 32,0
500D, 50D Canon CMOS 15,1 1.6 х 4,7 µm 332,3 22,3 x 14,9 4752 x 3168 5413 f/7,9 39,2
7D / 60D / 600D Canon CMOS 17,9 1.6 х 4,3 µm 332,3 22,3 x 14,9 5184 x 3456 5905 f/7,2 46,7
7D Mark II Canon CMOS 19.96 1.6 х 4,1 µm 336 ~ 22,4 x 15,0 (?) 5472 x 3648 ~ 6177 f/6.9 50,3
5Ds (r) Canon CMOS 50,3 1.0 х 4,1 µm 864 36 x 24 8688 x 5792 6130 f/6.9 50,3
N i k o n
D1/D1H Sony CCD 2,6 1.5 х 11,9 µm 367,4 23,7 x 15,5 2000 x 1312 2143 f/20 6,2
D2H Nikon JFET 4,0 1.5 х 9,6 µm 367,4 23,7 x 15,5 2464 x 1632 2641 f/16,1 9,3
D1X**** Sony CCD 5,3 1.5 х 5,9/11,9 369,7 23,7 x 15,6 4028 x 1324
D700/D3/D3s ? CMOS 12.1 1.0 х 8,4 µm 860,4 36,0 x 23,9 4256 x 2832 3003 f/14,1 12,2
D4 ? CMOS 16,2 1.0 х 7,3 µm 860,4 36,0 x 23,9 4928 x 3280 3476 f/12,4 16,2
D40/D50/D70/D100 Sony CCD 6,0 1.5 х 7,8 µm 367,4 23,7 x 15,5 3008 x 2000 3237 f/13,1 14,0
D3000/D40x/D60/D80/D200 Sony CCD 10,0 1.5 х 6,1 µm 372,9 23,6 x 15,8 3872 x 2592 4167 f/10,3 23,4
D3X ? CMOS 24,4 1.0 х 5,9 µm 861,6 35,9 x 24 6048 x 4032 4279 f/9,9 24,4
D5000 / D90 Sony CMOS 12.2 1.5 х 5,4 µm 369,7 23,7 x 15,6 4288 x 2848 4637 f/9 28,8
D300 (s) / D2X (s) Sony CMOS 12.2 1.5 х 5,4 µm 369,7 23,7 x 15,6 4288 x 2848 4637 f/9 28,8
D800 (e) ? CMOS 36,2 1.0 х 4,9 µm 861,6 35,9 x 24 7360 x 4912 5207 f/8,2 36,3
D7000/5100 Sony CMOS 16.1 1.5 х 4,8 µm 370,5 23,6 x 15,7 4928 x 3264 5303 f/8,1 37,4
S o n y
A 100/200/230/300/330 Sony CCD 10.0 1.5 х 6,1 µm 372,9 23,6 x 15,8 3872 x 2592 4167 f/10,2 23,3
A900 / A850 Sony CMOS 24,4 1.0 х 5,9 µm 861,6 35,9 x 24 6048 x 4032 4279 f/9,9 24,4
A500 Sony CMOS 12.2 1.5 х 5,7 µm 366,6 23,5 x 15,6 4272 x 2848 4617 f/9,6 28,6
A700 Sony CMOS 12.2 1.5 х 5,5 µm 368,2 23,5 x 15,6 4288 x 2856 4635 f/9,2 28,8
A350/A380 Sony CCD 14.0 1.5 х 5,1 µm 369 23,5 x 15,7 4592 x 3056 4963 f/8,6 33,0
Sony A550 Sony CMOS 14.0 1.5 х 5,1 µm 365 23,4 x 15,6 4592 x 3056 4984 f/8,6 33,3
SLT-A57/35/55/A580 Sony CMOS 16,0 1.5 х 4,8 µm 366,6 23,5 x 15,6 4912 x 3264 5309 f/8,1 37,7
SLT-A77 / A65 / NEX-7 Sony CMOS 24,0 1.5 х 3,9 µm 366,6 23,5 x 15,6 6000 x 4000 6485 f/6,5 54
F u j i f i l m*****
S2 Pro Fujifilm CCD 6,1 1.6 х 7,6 µm 356,5 23 x 15.5 3024 x 2016 3340 f/12,8 14,9
S3/S5 Pro Fujifilm CCD 6,1 1.6 х 7,6 µm 356,5 23 x 15.5 3024 x 2016 3340 f/12,8 14,9
P e n t a x
K100D (Super) /K110D Sony CCD 6,0 1.5 х 7,8 µm 368,95 23,5 x 15,7 3008 x 2008 3251 f/13,1 14,2
K10D/K200D/K2000 Sony CCD 10,0 1.5 х 6,1 µm 369 23,5 x 15,7 3872 x 2592 4185 f/10,3 23,6
645D Kodak CCD 39,5 0.7 х 6,1 µm 1452 44 x 33 7264 x 5440 4193 f/10,2 24,5
K-r ? CMOS 12.2 1.5 х 5,5 µm 372,9 23,6 x 15,8 4288 x 2848 4615 f/9,3 28,3
K20D/K-7 Samsung CMOS 14.5 1.5 х 5,0 µm 365 23,4 x 15,6 4672 x 3104 5071 f/8,4 34,5
K-5 Sony CMOS 16.1 1.5 х 4,8 µm 370,5 23,6 x 15,7 4928 x 3264 5303 f/8,1 37,4
S i g m a******
SD14/SD15/DP1/DP2 Foveon CMOS 4,7 1.7 х 7,8 µm 285,7 20,7 x 13,8 2640 x 1760 3239 f/13,1 14,1
SD1 (m) Foveon CMOS 15,4 1.5 х 5 µm 384 24 x 16 4800 x 3200 5080 f/8,5 34,6
S a m s u n g
GX-20 Samsung CMOS 14.6 1.5 х 5,0 µm 365 23,4 x 15,6 4688 x 3120 5089 f/8,4 34,6
NV40 ? CCD 10,1 6,0 x 1,7 µm 28,2 6,13 x 4,60 3648 x 2736 15116 f/2,9 306
O l y m p u s
E400/410/420/450 Matsushita NMOS 9.98 2.0 х 4,7 µm 225 17,3 x 13,0 3648 x 2736 5356 f/7,9 38,4
E510/520/E3 Matsushita NMOS 9.98 2.0 х 4,7 µm 225 17,3 x 13,0 3648 x 2736 5356 f/7,9 38,4
E620/E30/E5 Matsushita NMOS 12.2 2.0 х 4,3 µm 225 17,3 x 13,0 4032 x 3024 5919 f/7,3 48,7
E-M5 Matsushita NMOS 15.9 2.0 х 3,7 µm 225 17,3 x 13,0 4608 x 3456 6765 f/6,3 63,7
L e i c a
M8 Kodak CCD 10 1.3 x 6,8 µm 479,7 26,8 x 17,9 3936 x 2630 3731 f/11,4 18,1
M9 Kodak CCD 18,1 1.0 x 6,8 µm 864 36 x 24 5212 x 3472 3731 f/11,4 18,1
S2 Kodak CCD 37.5 0,8 x 6,0 µm 1350 45 x 30 7500 x 5000 4230 f/10 22,4
H a s s e l b l a d
h4DII-31 Kodak CCD 31,6 0,8 x 6,8 µm 1463 44,2 x 33,1 6496 x 4872 3731 f/11,4 18,1
h4DII-39 Kodak CCD 39,0 0,7 x 6,8 µm 1807 49,1 x 36,8 7212 x 5412 3731 f/11,4 18,1
h4DII-50 Kodak CCD 50,1 0,7 x 6,0 µm 1807 49,1 x 36,8 8176 x 6132 4230 f/10 22,4
P h o n e s
iPhone 3Gs OV3650 CMOS 3,1 9.73 x 1,75 µm 9,8 3,63 x 2,71 2048 x 1536 14343 f/2,95 275
iPhone 4 OV5650 CMOS 5,0 7,64 x 1,75 µm 15,7 4,59 x 3,42 2592 x 1936 14343 f/2,95 275
iPhone 4s OmniVision CMOS 8,0 7,64 x 1,4 µm 15,7 4,59 x 3,42 3264 x 2448 18100 f/2,37 438,7
Nokia 808 ? CMOS 41,4 3,5 x 1,4 µm 81 10,8 x 7,5 7728 x 5368 18100 f/2,37 438,7

 В эту таблицу я вложил много сил и своего времени, её копирование запрещено (с) VladimirMedvedev.com

Примечания:


1 Mp — количество мегапикселей в фотографии
2 DLA (diffraction limited aperture) — ДОД (дифракционное ограничение диафрагмы). Самая узкая диафрагма при которой возможна попиксельная резксть (подробнее см раздел Дифракиция, перед таблицей).
3 36х24 mp — показывает предполагаемое количество пикселей на полноформатной матрице, сделанной по технологии рассматриваемой камеры. Т.е., например, если сделать полноформатную матрицу на основе Canon 50D, то она будет на 39,2 mp.
4 Пиксели Nikon D1x прямоугольные. Реальные 5 mp, получаемые с матрицы растягивались в 10 mp фотографию. Рассчитывать dpi и dla для такой техники смысла нет.
5 Fujifilm — Подсчитывая dpi сенсора у камер Fujifilm с нестандартной матрицей (с ячейками двух типов), учитывались только основные пиксели. Из-за структуры матрицы, было бы не правильно считать и основные и дополнительные пиксели. Основные пиксели занимают практически весь полезный объём, а маленькие, дополнительные, — лишь небольшие ячейки между ними (для более подробной информации смотрите официальный сайт Fujifilm).
6 Sigma — Матрицы Foveon, которые используются в камерах компании Sigma, состоят из трёх слоёв (RGB) и, в отличае от других камер, каждый пиксель на фотографии формируется из трёх пикселей матрицы. Это происходит потому, что пиксели расположены один над одним и не несут дополнительной информации о яркости (только о цвете). Именно поэтому, при матрице в ~ 14 mp, фотографии получаются всего 4 mp. Плотность пикслов рассчитывается для одного слоя.

 

PS Не могу не отметить, что на самом деле, фотоприёмник занимает далеко не всю площадь пикселя, некоторое место приходится уделять также и, так называемой, обвязке. Для того, чтобы увеличить полезную площадь, производители создают специальные собирающие микро-линзы на матрице:

Чем с большей площади собирают свет микролинзы, тем более эффективной должна быть, в теории, работа матрицы, и тем меньше должно быть шумов. Но это пока только в теории…

vt-tech.eu

Какая матрица для фотоаппарата лучше: как выбрать

Покупая фотоаппарат, неважно какой: профессионального класса или рядовой бюджетный компакт для съемок друзей и семьи на природе, хочется, чтобы снимки получались качественными, а сам аппарат давал как можно больше свободы. Зная, какая матрица для фотоаппарата лучше, можно не впадать в ступор в магазине при виде двух моделей разных марок, которые выглядят одинаково, но стоят очень по-разному. Все дело в сенсоре, который и отвечает за то, какое изображение будет получаться и насколько гибкие рамки пользования фотоаппаратом будут у владельца.

Немного технических сведений

Матрицы цифровых фотоаппаратов делятся на два основных типа по применяемым полупроводникам и технологии считывания информации.

  1. Тип матрицы ПЗС (CCD) — самый распространенный. Это достаточно дешевая технология, информация об изображении считывается последовательно с каждой ячейки.
  2. КМОП матрицы CMOS дороже, но эффективнее в плане скорости работы, поскольку позволяют считывать данные сразу со всех светочувствительных элементов. Такие сенсоры устанавливаются в дорогих камерах, поскольку ни один производитель не пройдет мимо шанса предоставить пользователю возможности съемки с очень малыми выдержками, что в свою очередь усложняет аппаратно-программный комплекс.

Большинство фотоаппаратов пользовательского класса оснащено ПЗС матрицами. При этом ставится вполне ожидаемое условие: для получения действительно качественных снимков при естественном освещении (или при недостаточном) лучше использовать штатив, поскольку время выдержки будет значительным. Аналогично — не получится делать снимки крайне быстро, поскольку нужно время на получение и обработку изображения.

Некоторые производители решают последнюю проблему достаточно просто: оснащают фотоаппараты буфером памяти. Туда помещаются кадры до обработки, когда ведется съемка в так называемом спортивном режиме — серией за короткий промежуток времени.

Дорогие фотокамеры, оснащенные КМОП матрицами, позволяют делать снимки «с рук» с малой выдержкой, имеют высокую светочувствительность и низкий уровень шума. С помощью такого оборудования можно проводить экспонометрию, снижается время автофокусировки, естественно, легко сделать хороший кадр.

Еще одна технология, которая применяется в самой дорогой фототехнике — многослойные матрицы. Это не очередной пункт в списке «виды матриц». Светочувствительная зона таких аппаратов состоит из трех слоев ПЗС, каждый из которых считывает только один цвет. В результате качество изображения просто потрясает. Техника с данной технологией особо маркируется: 3CCD.

Последнее, что стоит упомянуть, – технологические размеры матриц. ПЗС сенсоры можно сделать маленькими, они построены на кремниевых элементах. А КМОП матрицы достаточно большие, что является еще одним рациональным доводом в пользу их применения в дорогой профессиональной технике.

Количественный показатель качества

Задавая себе вопрос, какая матрица фотоаппарата лучше,- можно достаточно быстро получить ответ без необходимости вникать в технологические особенности. Обратите внимание на следующие характеристики:

  • заявленное количество мегапикселей в характеристике камеры;
  • эффективное количество пикселей, которое ответственные производители указывают в документации к фотоаппарату;
  • возможные размеры изображений, которые можно делать с помощью камеры.

Производители дешевых моделей фотоаппаратов часто лукавят, указывая, прежде всего, размерность картинки и выставляя огромные цифры как эффективный рекламный ход. Это не говорит о качестве получаемых снимков. Типы матриц фотоаппаратов могут быть разного класса. Однако если сенсор не имеет достаточной разрешающей способности, большие изображения на выходе будут иметь низкую детализацию и высокий уровень шума.

Еще больше о качестве камеры скажет соотношение между заявленными мегапикселями матрицы и количеством эффективных точек. Это напрямую говорит о применяемой оптике. Если аппаратная часть выполнена ответственно, заявленное и эффективное количество пикселей будет почти одинаково, что не только положительно характеризует продажную цену, но и напрямую отвечает за качество снимков.

Светочувствительность и шумы

Светочувствительность матрицы — еще одна характеристика, которая описывает фотоаппарат. Покупать камеру стоит, ориентируясь на планируемые возможности применения. Сегодня в документации в графе светочувствительности можно встретить очень высокие цифры — до 51000 и больше. Однако это не говорит напрямую о возможности делать качественные снимки. Нет и рекомендаций, какой должна быть светочувствительность. Работает все следующим образом:

  • для получения хорошего изображения требуется обеспечить выдержку, время которой зависит от уровня освещенности и светочувствительности матрицы;
  • при среднем и низком освещении приходится применять штатив;
  • если хочется продолжать снимать «с рук», можно программно поменять уровень светочувствительности матрицы в настройках фотоаппарата.

Однако высокая светочувствительность при малой установленной выдержке — это прямой путь к появлению шумов на снимке. Повышенная зернистость, появление мозаики — это те черты, которые раздражают и требуют тщательной вторичной обработки изображения.

Уровень светочувствительности является определяющим только при четком осознании того, в каких именно условиях будет использоваться камера. К примеру, при работе со штативом можно покупать фотоаппарат с высоким показателем, это даст широкие возможности съемки при самых разных освещениях без применения вспышки.

Физическая геометрия сенсора

Физический размер матрицы фотоаппарата в миллиметрах — еще один фактор, который не только напрямую отвечает за качество снимков, но и очень сильно формирует цену камеры. У самых лучших моделей соотношение размерности, которое основано на стандартном формате пленки 35 мм, близко к единице. Чем дешевле модель, тем выше показатель «кроп», обрезки, который сигнализирует о том, что матрица меньше по габаритам.

Чем меньше площадь сенсора, тем ниже охват визуального пространства перед объективом и:

  • ниже общее количество света, которое падает на матрицу, следовательно, приходится повышать светочувствительность и увеличивать цифровой шум;
  • больше теряется малых деталей, появляется размытие, это вызывают малые размеры, до которых преобразуется кадр.

Высокие значения кропа в фотоаппарате также означают, что разница в освещенности объектов в поле зрения фотоаппарата будет сглаживаться, что очень негативно сказывается на снимках, полученных в вечернее время без вспышки, например.

Коэффициент размерности указывается в документации к камере. Неважно, ориентируетесь ли на бюджетную или профессиональную модель — лучше будет купить аппарат с большой в геометрическом смысле матрицей.

Заключение

Невозможно сказать, какая матрица лучше. Выбирать фотоаппарат следует исходя из режимов, в которых он будет использоваться. Невозможно провести и всесторонне сравнение матриц фотоаппаратов – каждая проиграет в каком-то случае.

Правильно предсказанные условия съемок позволят камерам даже с относительно посредственными матрицами делать очень хорошие снимки. Главный фактор, который нужно учитывать обязательно — геометрические размеры матрицы. Тем, кто хочет получать действительно большие изображения в пикселях, также нужно обратить внимание на количество эффективных мегапикселей фотоаппарата.

tehnopanorama.ru

Что такое матрица в фотоаппарате и её основные параметры

Матрица фотокамеры служит для преобразования попадающего на нее с объектива светового потока в электрические сигналы, которые затем камера и преобразует в снимок. Делается это при помощи фотодатчиков, расположенных на матрице в большом количестве.

Что такое матрица фотоаппарата — это микросхема, состоящая из фотодатчиков, которые реагируют на свет.

Структура самой матрицы является дискретной, то есть состоящей из миллионов элементов (фотоэлементов), преобразующих свет.

Поэтому в характеристиках фотоаппарата как раз и указывается количество элементов матрицы, которое мы знаем как мегапиксели (Мп). 1 Мп = 1 миллиону элементов.

Именно от самой матрицы и зависит количество мегапикселей фотоаппарата, которое может принимать значение от 0.3 (для дешевых телефонных фотоаппаратов) до 10 и больше мегапикселей у современных фотоаппаратов. Например, 0,3 Мп это в переводе уже 300 тысяч фотоэлементов на поверхности матрицы.

Характеристиками матрицы можно считать такие параметры:
  • Физический размер
  • Разрешение (мегапиксели)
  • Светочувствительность
  • Отношение сигнал-шум

Внешний вид матрицы

Сама матрица фотоаппарата формирует черно белое изображение, поэтому для получения цветного изображения, элементы матрицы могут покрывать светофильтрами (красный, зеленый, синий). И если сохранять фотографию в формате JPEG и TIFF, то цвета пикселей фотоаппарат вычисляет сам, а при использовании формата RAW пиксели будут окрашены в один из трех цветов, что позволит обработать такой снимок на компьютере без потери качества.


Физический размер

Еще одной характеристикой матрицы является размер. Обычно размер указывается как дробь в дюймах. Чем больше размер, тем меньше шума будет на фотографии и больше света регистрируется, а значит, больше оттенков получится.

Размер матрицы очень важный параметр всего фотоаппарата.



Разные размеры матрицы

Чувствительность и шумы

В фототехнике применительно к матрицам используется термин «эквивалентная» чувствительность. Происходит это потому, что настоящую чувствительность измеряют различными способами в зависимости от назначения матрицы, а применяя усиление сигнала и цифровую обработку, можно сильно изменить чувствительность в больших пределах.

Светочувствительность любого фотоматериала показывает способность этого материала преобразовывать электромагнитное воздействие света в электрический сигнал. То есть, сколько нужно света, что бы получить нормальный уровень электрического сигнала на выходе.

Чувствительность матрицы (ISO) влияет на съемки в темных местах. Чем больше чувствительность можно выставить в настройках, тем лучше будет качество снимков в темноте при нужных диафрагме и выдержке. Значение ISO может быть от нескольких десятков до нескольких десятков тысяч. Недостатком большой светочувствительности может быть проявление шума на фотографии в виде зернистости. Так же чувствительность участвует в настройке экспозиции.


Размер и количество пикселей

Размер матрицы и ее разрядность в мегапикселях связаны между собой такой зависимостью: чем меньше размер, тем должно быть и меньше мегапикселей. Иначе из-за близкого размещения фотоэлементов возникает эффект дифракции и может получиться эффект замыливания на фотографиях, то есть пропадет четкость на снимке.

Еще размер матрицы и ее разрешение определяют размер пикселя и соответственно динамический диапазон, который показывает возможность фотокамеры отличить самые темные оттенки от самых светлых и передать их на снимке.

Так же чем больше размер пикселя, тем больше отношение сигнал-шум ведь больший по размерам пиксель может собрать больше света и увеличивается уровень сигнала. Поэтому при одинаковом размере матрицы меньшее количество мегапикселей может быть даже полезнее для качества фотографии.

Чем больше физический размер пикселя (англ. pixel — picture element), тем больше он сможет собрать падающего на него света и тем больше будет соотношение сигнал-шум при заданной чувствительности. Можно и по-другому сказать: при заданном соотношении сигнал-шум будет выше чувствительность. Это означает, что можно увеличивать значение чувствительности при настройке экспозиции без боязни получить шумы на фотографии. Разумеется шумы появятся, только значение ISO, при котором это произойдет, будет разным для разных фотокамер. Поэтому зеркалки со своими большими матрицами по этим показателям сильно опережают компакты.

Размер пикселя зависит от физического размера матрицы и её разрешения. Размер пикселя влияет на фотографическую широту. Дополнительно о количестве мегапикселей.


Матрица на плате

Разрешение

Разрешение матрицы зависит от количества используемых пикселей для формирования изображения. Объектив формирует поток света, а матрица разделяет его на пиксели. Но оптика объектива также имеет свое разрешение. И если разрешение объектива не достаточное, и он передает две светящиеся точки с разделением черной точкой как одну светящуюся, то точного разрешения фотоаппарата, которое зависит от значения Мп, можно и не заметить.

Поэтому результирующее разрешение фотокамеры зависит и от разрешения матрицы и от разрешения объектива, измеряемое в количестве линий на миллиметр.

И максимальным это разрешение будет, когда разрешение объектива соответствует разрешению матрицы. Разрешение цифровых матриц зависит от размера пикселя, который может быть от 0,002 мм до 0,008 мм (2-8 мкм). Сегодня количество мегапикселей на фотосенсоре может дистигать значения 30 Мп.



Структура матрицы

Отношение сторон матрицы

В современных фотоаппаратах применяются матрицы с форматами 4:3, 3:2, 16:9. В любительских цифровых фотоаппаратах обычно используется формат 4:3. В зеркальных цифровых фотоаппаратах обычно применяют матрицы формата 3:2, если специально не оговорено применение формата 4:3. Формат 16:9 редко используется.


Тип матрицы

Раньше в основном использовались фотосенсоры на основе ПЗС (прибор зарядовой связи, по-английски CCD — Charge-Coupled Device). Эти матрицы состоят из светочувствительных светодиодов и используют технологию приборов с зарядовой связью (ПЗС). Успешно применяется и в наше время.

Но в 1993 году была реализована технология Activ Pixel Sensors. Её развитие привело к внедрению в 2008 году КМОП-матрицы (комплиментарный металл-оксид-полупроводник, по-английски CMOS — Complementary-symmetry/Metal-Oxide Semiconductor). При этой технологии возможна выборка отдельных пикселей, как в обычной памяти, а каждый пиксель снабжен усилителем. Так же матрицы на этой технологии могут иметь и автоматическую систему настройки времени экспонирования для каждого пикселя. Это позволяет увеличить фотографическую широту.

Фирма Panasonic создала свою матрицу Live-MOS-матрицу. Она работает на МОП технологии. Применяя такую матрицу можно получить живое изображение без перегрева и увеличения шумов.

Откуда берутся шумы на снимках и как их уменьшить.

Как можно почистить матрицу в зеркальном фотоаппарате.

Как размер матрицы влияет на качество снимков.

vybrat-tekhniku.ru

Какой размер матрицы фотоаппарата лучше: таблица размеров

Рад вновь приветствовать вас, дорогой читатель. С вами на связи, Тимур Мустаев. Ранее на нашем блоге уже обозревались светочувствительные элементы фотоаппаратов, их свойства, кроп-фактор, количество мегапикселей и прочие параметры. Сегодня настал тот день, когда я вам расскажу более подробно, какой размер матрицы фотоаппарата лучше и почему.

В чём подвох?

Итак, если вы заинтересовались этой темой, значит, вы заинтересованы в улучшении качества своих фотографий. Вы, наверняка, уже слышали байку от рекламщиков, что на качество фотографии влияет только лишь количество мегапикселей. На самом деле, это не совсем так. Почему? Давайте разбираться.

Практически в каждом магазине фотооборудования есть, как минимум, один постер, кричащий о новой камере со встроенной матрицей супер высокого разрешения. Естественно, стоить она будет много больше, чем «скромные» конкуренты, поэтому рекламировать их гораздо выгоднее.

Размер матрицы

Если говорить о габаритах датчика, то здесь любого читателя ожидает огромный диапазон вариантов. От миллиметровых сенсоров смартфонов до огромных светочувствительных элементов кинокамер. Я постараюсь затронуть лишь фотокамеры, насколько это будет возможно.
Итак, существует специальная классификация размеров матриц фотоаппаратов. Таблица, приведённая ниже, показывает более наглядно различия в их длине и ширине.

Как мы здесь видим, начинается с 1/3-½ дюйма. Как правило, такие сенсоры устанавливаются в наиболее дешёвых вариантах любительских мыльниц. Соотношение сторон таких матриц составляет 4:3. Вообще, этого достаточно для формирования семейного фотоальбома, но ведь мы не для этого начали так подробно изучать фотографию, верно?

Камеры с соотношением 2/3, 4/3 дюйма имеют такое же соотношение сторон, однако, пикселям на них более «комфортно», что положительно сказывается на качестве, потому применяются такие элементы на более дорогих фотоаппаратах.

Остальные варианты представляют собой сенсоры, с соотношением сторон 3:2, а также составляют половину от полного кадра. Последний пункт таблицы – Full Frame. Он полностью соответствует своему названию и представляет собой золотой стандарт – 35-миллиметровый светочувствительный элемент. 35-мм сенсор, кстати говоря, соответствует размеру плёнки старых камер, о чём уже говорилось ранее, в одной из прошлых статей.

Каков итог?

Настал тот момент, когда нужно формулировать тезисы. Итак, первый из них – чем шире и выше матрица, тем дальше пиксели находятся друг от друга. Как результат, пиксели «чувствуют себя более комфортно» в таких условиях: они меньше подвергаются перегреву и, сами по себе, имеют большие габариты, за счёт чего каждый из них может захватить большее количество света.

Исходя из этого, делаем вывод, что две камеры с одинаковым количеством мегапикселей и разной величиной сенсора получат различный конечный снимок. Камера с большим датчиком получит фотографию более качественную.

Мегапиксели

Как бы реклама не заверяла, что их количество сильно влияет на качество фотографии, это не совсем так. Вообще, число фотодиодов определяет не столько качество, сколько количество занимаемого в памяти объёма светового отпечатка, который передаётся на процессор. Конечно, высокое разрешение – это хорошо, только если они расположены на матрице соответствующего размера. Иначе, элементы будут перегревать друг друга, из-за чего на фотографиях может образоваться шум.

Благодаря тому, что огромное количество фотографов начинает разбираться в этом вопросе, производители начали создавать пиксели большей величины, чем раньше. А какой от этого толк?

Всё просто: площадь пикселя обширнее, следовательно, он способен захватить большее количество света и передать его на процессор для обработки.

Как мы знаем, многие камеры имеют определённый диапазон регулировки разрешения конечной фотографии. Так вот, подавляющая часть зеркалок имеют показатель от 12 до 24 Мп, а профессиональные – 10-36 Мп, причём площади сенсоров отличаются в 2 и более раз.

В чём смысл всего этого? Можно выбрать среднее разрешение меж двух крайних значений. Это обеспечит быструю обработку снимка и задействует лишь часть пикселей, из-за чего увеличится расстояние между работающими элементами. Такой лайфхак позволит избавиться от лишних шумов.

В чём же итог? Всё просто: под каждый случай будет хороша определённая матрица, однако, сравнение конечных результатов покажет превосходство полнокадрового датчика. Причиной тому универсальность последнего.

Если у вас есть зеркальная фотокамера и вы хотите научиться ею пользоваться, чтобы получать красивые фотографии, предлагаю вашему вниманию «Цифровая зеркалка для новичка 2.0» или «Моя первая ЗЕРКАЛКА». Данный видео курс, просто находка для новичка. Ознакомившись с его содержимым, вы получите отличные знания о зеркалки. Помните, саморазвитие — это большой шаг в будущее своего успеха.

Цифровая зеркалка для новичка 2.0 — у вас NIKON? Этот курс для вас.

Моя первая ЗЕРКАЛКА — у вас CANON? Этот курс для вас.

Надеюсь, у меня получилось рассказать о матрицах в фотоаппаратах, какая лучше и почему стоит выбирать больший сенсор. Если статья была интересна, а также полезна для вас – расскажите о ней друзьям, подпишитесь на обновления блога, впереди нас ждёт масса полезных фотостатей.

Всех вам благ, Тимур Мустаев.

fotorika.ru

Матрица фотоаппарата. Типы и характеристики.

Матрица фотоаппарата самая важная составляющая часть любой камеры. Именно она ответственна за создание изображения, после поступления на ее поверхность светового потока. Если описать матрицу научными словами, то это будет звучать следующим образом, микросхема состоящая из светочувствительных элементов, фотодиодов. Посмотрите следующий снимок, где показано месторасположение матрицы в блоке самого фотоаппарата («тушке»).

Матрица фотоаппарата самым прямым образом влияет на качество итогового изображения, что в сочетании с профессиональным фотообъективом приводит к точной и полной передаче всех деталей реальности.

 

1. Размер матрицы

2. Количество пикселей

3. Светочувствительность

Теперь подробнее о каждой из указанных характеристик.

Физический размер матрицы, т.е соотношение длины и ширины, измеряемой в миллиметрах, одна из самых важных характеристик матрицы. Чем больше размер, тем лучше будет качество фотографии. Почему? Большая по размеру матрицу, получает больше света, что в свою очередь связано с фактором ISO/светочувствительности. Даже при высоких значения ISO, количество шумов на фотоснимке, сделанном на профессиональную камеру с большой матрицей, будет минимальное. Чего нельзя сказать о фотоснимке сделанном, при участии маленькой матрицы.

Далее на картинке вы можете изучить самые распространенные размера матрицы в соотношение к диагонали.

Количество пикселей в матрице фотоаппарата влияет на размер изображения. Все профессиональные зеркальные фотокамеры снабжены матрицей с большим числом мегапикселей. Как результат, вы сможете распечатать большую фотографию, плакат или постер и все цвета и детали при этом, будут переданы в наилучшем качестве.

                    Типы матриц фотоаппарата.

По применяемой технологии матрицы бывают нескольких типов, но самые популярные из них:

ПЗС (CCD — Charge Coupled Device). Данный тип матрицы выпускается практически всеми фирмами производителями фотокамер (Nikon, Canon, Sony и др.). Один из очевидных плюсов высокая чувствительность и маленький уровень шумов, что положительно влияет на качество фотографии, но высокое энергопотребление.

КМПО (CMOS — Complementary Metal Oxide Semiconductor). Основные плюсы данного вида матрицы низкое энергопотребление и высокое быстродействие. В наши дни данный вид матрицы самый распространенный.

Далее, для примера я привела небольшую сравнительную характеристику фотокамер двух фирм лидеров производителей Nikon и Canon.

Профессиональные фотокамеры Nikon D5 (21,33 Мп), D810a (37,09 Мп) имеют КМОП-матрицу размером 35,9 x 24,0 мм. Компактные фотокамеры, например Nikon CoolPix L340, L2750 снабжены ПЗС матрицей.

Профессиональные фотокамеры Canon EOS – 1D X II Mark (21,5 Мп), EOS 5DS R (50,6 Мп) имеют CMOS матрицу. У Canon даже такие компактные камеры как PowerShot SX720 HS, SX 620HS также работают на  КМПО матрице.

На этом я заканчиваю свою статью под названием «Матрица Фотоаппарата», дальше будет еще больше полезных и интересных статей. Подписывайтесь на обновления моего блога, и вы будете первыми получать новые статьи.

blogphotografelena.ru

Станьте первым комментатором

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *