8. Процесс теплопередачи
В теплотехнике часто тепловой поток от одной жидкости (или газа) к другой передается через стенку. Такой суммарный процесс теплообмена, в котором теплоотдача соприкосновением является необходимой составной частью, называется теплопередачей.
При теплопередаче через плоскую однослойную стенку процесс сложного теплообмена состоит из трех этапов: теплоотдача от нагретой среды к левой поверхности стенки, теплопроводность через стенку и теплоотдача от правой поверхности стенки к холодной среде. Тепловой поток в каждом случае передачи теплоты будет записываться следующим образом:
уравнение теплоотдачи от нагретой среды к стенке α-коэф. теплоотдачи
уравнение теплопроводности через стенку
λ – коэф. теплопроводности материала.
уравнение теплоотдачи от стенки к холодной среде
Найдем полный темперый напор
откуда поверхностная плотность теплового потока для процесса теплопередачи через однослойную плоскую стенку
Величина k называется коэффициентом теплопередачи и представляет собой мощность теплового потока, проходящего от более нагретой среды к менее нагретой через 1 м2 поверхности стенки за 1 ч при разнице температур между средами 1°С. Величина, обратная коэффициенту теплопередачи называется термическим сопротивлением теплопередаче и обозначается R, м2⋅К/Вт. При теплопередаче через многослойную стенку с n слоев плотность теплового потока определяется также. При этом коэффициент теплопередачи и термическое сопротивлении теплопередаче согласно определению
9. Теплообменные аппараты.
Важным конструктивным элементом систем инженерных сетей и
оборудования является теплообменный аппарат (теплообменник) – устройство, предназначенное для передачи теплоты от одного
теплоносителя другому. В качестве теплоносителя в нем могут использо-
ваться пар, горячая вода, дымовые газы и другие тела. По принципу действия и конструктивному оформлению теплообменники разделяются на рекуперативные, регенеративные и смесительные. В рекуперативных теплообменниках обмен теплотой между теплоносителями происходит способом теплопередачи от греющего теплоносителя к нагреваемому через разделяющую их твердую стенку. Процесс теплообмена в них протекает при стационарном режиме. В зависимости от взаимного направления обменники этого типа бывают прямоточные, противоточные и перекрестные
К числу рекуперативных теплообменников относятся паровые котлы,
водонагреватели, приборы систем центрального отопления и др.
В регенеративных теплообменниках процесс теплообмена происходит в условиях нестационарного режима. В них поверхность нагрева представляет собой специальную насадку из кирпича, металла или другого материала, которая сначала аккумулирует теплоту, а затем отдает ее нагреваемому теплоносителю. По такому принципу работают отопительные печи. В смесительных теплообменниках
Процесс теплоотдачи
Процесс теплоотдачи
Процесс теплообмена между жидкостью и стенкой, которую эта жидкость омывает, называется конвективным теплообменом, или процессом теплоотдачи. Процесс теплоотдачи предполагает, что теплота передается одновременно путем теплопроводности и конвекции, и поэтому такой вид теплообмена представляет собой сложный процесс, зависящий от большего числа факторов по сравнению с процессом чистой теплопроводности.
Конвективный теплообмен характерен для большинства процессов тепловой обработки строительных материалов и изделий, связанных с прохождением газов через слой материала, через садку изделий, над уровнями жидкостей при сушке и т. д.
Факторы, влияющие на процесс теплоотдачи, условно можно разделить на следующие группы.
I. Природа возникновения движения жидкости вдоль стенки. В зависимости от причины, вызывающей движение жидкости, различают два вида движения — свободное и вынужденное. Свободное движение, называемое иначе естественной конвекцией, вызывается подъемной силой, обусловленной разностью плотностей холодных и нагретых частиц жидкости. Интенсивность свободного движения зависит от вида жидкости, разности температур между отдельными ее частицами и объема пространства, в котором протекает процесс.
Вынужденное движение жидкости, или вынужденная конвекция, обусловлено работой внешних агрегатов (насоса, вентилятора и т. п.). Движущая сила при этом виде движения возникает вследствие разности давлений, устанавливающихся на входе и выходе из канала, по которому перемещается жидкость. Если скорость вынужденного движения небольшая и есть разница температур между отдельными частицами жидкости, то наряду с вынужденным движением может наблюдаться и свободное движение.
II. Режим движения жидкости. Движение жидкости может иметь ламинарный или турбулентный характер. В первом случае частицы жидкости в форме отдельных несмешивающихся струй следуют очертаниям канала или стенки и профиль скоростей на достаточном удалении от начала трубы имеет вид правильной параболы. Подобное распределение установившихся скоростей обусловливается наличием сил внутреннего трения (вязкости) между частицами жидкости. При этом максимальная скорость движения частиц жидкости, перемещающейся по оси трубы, в 2 раза больше средней скорости их движения, получаемой в результате деления секундного объема жидкости на площадь поперечного сечения трубы (рис. 14.1, а).
Турбулентный режим движения характеризуется непостоянством скорости движения частиц жидкости в рассматриваемой точке пространства. Из — за непрерывного перемешивания жидкости в ней нельзя выделить отдельные струи, и такое движение лишь условно можно назвать стационарным, считая для каждой частицы жидкости характерными не мгновенные, а усредненные за некоторый промежуток времени значения скорости. В этом случае профиль скоростей по сечению трубы будет иметь вид усеченной параболы и максимальная скорость, наблюдаемая у частиц жидкости, движущихся по оси трубы, будет всего в 1,2 — 1,3 раза больше средней скорости. Характерно, что не все частицы жидкости при турбулентном режиме имеют неупорядоченное движение. Вблизи стенок, ограничивающих потоки, вследствие вязкости жидкости пульсации скорости уменьшаются, и около самой стенки сохраняется тонкий пограничный слой, движущийся ламинарно.
В пределах этого слоя, который имеет толщину не более нескольких тысячных долей диаметра трубы, скорость движения частиц жидкости резко меняется от нуля на самой стенке до 0,4 — 0,7 средней скорости на условной границе с турбулентным ядром потока (рис. 14.1, б).
Строго говоря, турбулентные пульсации проникают и в ламинарный подслой и затухают в нем вследствие действия сил вязкости. Поэтому термин «ламинарный подслой» правильнее заменять термином «вязкий подслой».
Английский физик Рейнольдс установил, что при движении жидкости в трубах переход из ламинарного режима в турбулентный определяется значением безразмерного комплекса wdp/µ, в который входят средняя скорость w, диаметр трубы d, плотность р и динамическая вязкость жидкости µ. Этот комплекс называют числом Рейнольдса и обозначают символом Re. При Re ≤ 2300 движение жидкости в трубах имеет ламинарный характер, а при Re ≥ 10 000 — турбулентный, т. е. критическая скорость, позволяющая определить переход любой жидкости из ламинарного режима в турбулентный для трубы любого диаметра, может быть найдена из соотношения w
В большинстве случаев, встречающихся в теплотехнике, Re > 10 000 и движение оказывается турбулентным. В особых условиях (при отсутствии шероховатостей на стенках, безвихревом входе жидкости в трубу и т. п.) можно сохранить ламинарное движение при числах Re до 10 000, но такое движение весьма неустойчиво и при небольшом местном возмущении потока из ламинарного сразу переходит в турбулентное. Показанные на рис. 14.1 кривые, характеризующие закономерность распределения скоростей по сечению трубы, справедливы лишь для стабилизированного движения. На основании опытных данных длина участка стабилизации для ламинарного режима может быть принята 0,03 d Re, а для турбулентного режима — около 40 d.
Режим движения жидкости определяет механизм переноса теплоты в процессе теплоотдачи. При ламинарном движении перенос теплоты от жидкости к стенке (или наоборот) осуществляется главным образом путем теплопроводности. При турбулентном движении такой способ передачи теплоты наблюдается лишь в ламинарном пограничном слое, а внутри турбулентного ядра теплота переносится путем конвекции. При этом на интенсивность теплоотдачи в основном влияет термическое сопротивление пограничного слоя. Последнее наглядно иллюстрируется рис. 14.2, на котором представлена схема движения жидкости при обтекании плоской поверхности (пластины).
Следует отметить, что по мере движения потока вдоль поверхности стенки толщина пограничного слоя постепенно возрастает тормозящее воздействие стенки распространяется на все более далекие слои жидкости. На небольших расстояниях от передней кромки стенки пограничный слой еще тонкий и течение жидкости в нем носит струйный ламинарный характер. Далее на некотором расстоянии хкр в пограничном слое начинают возникать вихри и характер течения становится турбулентным (рис. 14.2,б) Эти вихри обеспечивают интенсивное перемешивание жидкости в пограничном слое, но в непосредственной, близости от поверхности стенки они затухают, и здесь сохраняется очень тонкий вязкий подслой. Толщина пограничного слоя б погр.сл зависит от расстояния х от передней кромки стенки, скорости движения потока и кинематической вязкости v = µ /р. Переход к турбулентному режиму течения жидкости в пограничном слое определяется критическим значением числа Reкp, на которое при продольном обтекании пластины основное влияние оказывают степень начальной турбулентности набегающего потока жидкости, а также шероховатость поверхности, интенсивность теплообмена поверхности с жидкостью и т. д. Поскольку сам переход от ламинарного режима течения к турбулентному в пограничном слое происходит не в точке, а на некотором участие, вводят два критических значения числа Рейнольдса. При этом Reкp1 соответствует превращению ламинарного режима течения в переходный. В это время в пограничном слое начинают возникать первые вихри и пульсации, а Reкр2 соответствует переходу к развитому турбулентному режиму течения.
Следует также отметить, что наряду с описанным процессом формирования гидродинамического пограничного слоя происходит аналогичный процесс формирования и теплового пограничного слоя, в пределах которого температура меняется от tст до tж. Характер распределения температуры в тепловом пограничном слое зависит от режима течения жидкости в динамическом пограничном слое.
При ламинарном течении перенос теплоты между слоями жидкости осуществляется путем теплопроводности. В турбулентном пограничном слое основное изменение температуры происходит в пределах тонкого вязкого подслоя около стенки, через который теплота также передается путем теплопроводности. В турбулентном ядре пограничного слоя вследствие интенсивного перемешивания жидкости температура изменяется незначительно (см.рис. 14.2, б) и поле температур имеет ровный пологий характер, т. е. отмечается качественное сходство в пограничном слое между распределением температур и скоростей.
III.Физические свойства жидкостей. На процесс теплоотдачи непосредственно влияют следующие физические параметры жидкостей: теплопроводность µ, удельная теплоемкость с, плотность р, а также вязкость и температуропроводность.
Рис. 14.1. Распределение скоростей по сечению трубы при ламинарном (а) и турбулентном (б) режимах.
Рис. 14.2. Характер изменения температуры в пограничном слое (а) и скорости в тепловом и динамическом пограничных слоях (б) бл, бт — толщина пограничного слоя соответственно ламинарного и турбулентного.
Известно, что все жидкости обладают вязкостью, т. е. между отдельными частицами или слоями, перемещающимися с различными скоростями, всегда возникает сила внутреннего трения, противодействующая движению. По закону Ньютона, эта сила F, отнесенная к единице поверхности, пропорциональна градиенту скорости dw/dn, т. е. F = µdw/dn.
Коэффициент пропорциональности µ, в этом уравнении называется коэффициентом внутреннего трения или динамической вязкостью. При dw/dn = 1, µ = F, т. е. динамическая вязкость численно равна силе трения, приходящейся на единицу поверхности соприкосновения двух слоев жидкости, скользящих один по другому, при условии, что на единицу длины нормали к поверхности скольжения скорость движения изменяется на единицу. Отношение µ /p = v называется кинематической вязкостью. Если в комплексе wdp/µ заменить отношение р/µ = 1/v, то число Рейнольдса принимает вид Re = wd/v.
Понятие температуропроводности тел связано с протеканием в них нестационарных тепловых процессов, наблюдаемых обычно при нагревании или охлаждении. Скорость теплового процесса при нестационарном режиме определяется отношением µ/ср = а, которое называется температуропроводностью. Температуропроводность характеризует скорость выравнивания температуры в различных точках тела. Чем больше величина а, тем быстрее все точки какого-либо тела при его остывании или нагревании достигнут одинаковой температуры.
Единицей измерения динамической (абсолютной) вязкости µ. служит Па — с, а единицей измерения v и а — м2/с.
IV.Форма, размеры и состояние поверхности стенки, омываемой жидкостью. Обычно поверхности стенок имеют форму плит или труб, которые могут располагаться вертикально, горизонтально или наклонно. Каждая из этих форм поверхностей создает специфические условия для теплообмена между поверхностью стенки и жидкостью, омывающей эту поверхность. Для процесса теплоотдачи очень важно, перемещается ли жидкость внутри замкнутого пространства или поверхность стенки со всех сторон омывается жидкостью.Большое значение имеет также состояние поверхности стенки, оцениваемое ее шероховатостью.
Из рассмотрения факторов, влияющих на процесс теплоотдачи, видно, насколько сложно определить количество теплоты, переданной при конвективном теплообмене. Поскольку интенсивность процесса теплоотдачи в основном определяется наличием и толщиной ламинарного пограничного слоя, через который теплота передается лишь путем теплопроводности, для решения указанной задачи можно было бы воспользоваться законом Фурье, написав его в виде следующего уравнения:
(14.1)
Однако для расчетов использовать это уравнение не представляется возможным, так как значение температурного градиента у стенки grad ts и его изменение по всей поверхности теплообмена S определить не удается.
Для удобства расчетов в соответствии с рис. 14.2, а значение градиента температуры dt/dn из подобия элементарного треугольника и треугольника ABC заменяют отношением:
(14.2)
Это уравнение в теплотехнике называется уравнением Ньютона.
В формуле (14.2) Δt — температурный напор, а коэффициент пропорциональности α, характеризующий условия теплообмена между жидкостью и поверхностью твердого тела называется коэффициентом теплоотдачи (теплообмена) Единицей измерения для α служит Вт/(м2×К).
Числовое значение коэффициента теплоотдачи определяет мощность теплового потока, проходящего от жидкости к стенке (или обратно) через единицу поверхности (1 м2) при разности температур между жидкостью и стенкой 1°.
Коэффициент теплоотдачи α зависит от большого числа разнообразных факторов, указанных в перечисленных четырех группах. Это приводит к тому, что при одинаковых условиях процесса теплоотдачи значения α колеблются в весьма широких пределах, Вт/(м2×К), например:
Следует отметить, что с возрастанием вязкости повышается толщина пограничного слоя и уменьшается коэффициента возрастание скорости потока теплоносителя приводит к уменьшению толщины пограничного слоя и к увеличению коэффициента теплоотдачи.
Наиболее точно коэффициент теплоотдачи а можно определить опытным путем. Но этот способ определения а представляет собой нелегкую задачу, особенно для сложных и громоздких тепловых устройств, например таких, как паровой котел. Но и проводя опыты, нельзя быть уверенным в том, что закономерности, найденные для данного теплового агрегата, окажутся справедливыми для другого аппарата, может быть еще не построенного и потому недоступного для непосредственного изучения.
В настоящее время опытное определение коэффициента теплоотдачи производится, как правило, не на самих образцах тепловых устройств, а на их упрощенных моделях, более удобных для экспериментирования. Результаты опытов, проведенных на моделях, обобщают, используя тепловую теорию подобия (см. § 14.3). Основной вывод, который делают на основе этой теории, заключается в том, что нет необходимости искать зависимость коэффициента теплоотдачи от каждого из тех факторов, которые на него влияют, а достаточно найти зависимость между определенными безразмерными комплексами величин, характерных для рассматриваемых условий процесса теплоотдачи. Эти безразмерные комплексы величин называют критериями подобия. Составленные из размерных величин критерии подобия отражают физическую сущность, или, как говорят, модель процесса. Следовательно, задача заключается в том, чтобы найти вид зависимостей между критериями подобия, называемых критериальными уравнениями. Составляют критерии подобия с помощью дифференциальных уравнений конвективного теплообмена, т. е. уравнений, которые дают аналитическую зависимость между параметрами, характеризующими процесс теплоотдачи в дифференциальной форме.
Сопряженная теплопередача | Блог COMSOL
В этой статье мы объясним, что такое сопряженная теплопередача, и продемонстрируем несколько примеров. Сопряженной теплопередачей называется теплообмен в твердых телах и жидкостях. В твердых телах основным способом теплопередачи является теплопроводность, а для жидкостей более характерна конвекция. Явление сопряженной теплопередачи проявляется во множестве ситуаций. Например, конструкция радиатора оптимизируется для того, чтобы объединить теплопередачу посредством теплопроводности материала, из которого изготовлен радиатор, и конвекцию окружающей его жидкости.
Теплопередача в твердых телах и жидкостях
Теплопередача в твердом теле
В большинстве случаев теплопередача в твердых телах, вызванная исключительно теплопроводностью материала, описывается законом Фурье, согласно которому плотность теплового потока, q, пропорциональна градиенту температуры: q=-k\nabla T.
Для нестационарной задачи поле температуры в неподвижном твердом теле следует уравнению теплопроводности в следующей форме:
\rho C_{p} \frac{\partial T}{\partial t}=\nabla \cdot (k\nabla T) +Q
Теплопередача в жидкости
Из-за движения жидкости в уравнение добавляются еще три слагаемых:
- Перемещение жидкости также предполагает передачу энергии, что проявляется в виде конвекционной составляющей в уравнении теплового баланса. В зависимости от тепловых характеристик жидкости и режимов потока может преобладать теплопередача посредством либо конвекции, либо теплопроводности.
- Вязкостные явления в потоке жидкости приводят к ее нагреву. Диссипативным эффектом часто пренебрегают, однако в высокоскоростных потоках вязких жидкостей его влияние может быть существенно.
- Поскольку плотность жидкости зависит от температуры, в уравнение теплового баланса добавляется новое слагаемое — работа давления. Примером может служить хорошо известный пример образования тепла при сжатии воздуха.
Учет теплопроводности и слагаемых, описывающих перечисленные механизмы, приводит к следующему нестационарному уравнению теплопроводности для поля температуры в жидкости:
\rho C_{p} \frac{\partial T}{\partial t}+\rho C_p\bold{u}\cdot\nabla T= \alpha_p {T}\left( \frac{\partial p_\mathrm{A}}{\partial t}+\bold{u}\cdot\nabla p_\mathrm{A}\right)+\tau : S+\nabla \cdot (k\nabla T) +Q
Прикладные задачи, связанные с сопряженной теплопередачей
Высокоэффективная теплопередача
Возможность эффективного объединения процессов теплопередачи в твердых телах и жидкостях является ключевой для проектирования высокоэффективных охладителей, нагревателей и теплообменников.
Обычно для передачи теплоты на большие расстояния используются жидкие теплоносители. Самым распространенным способом обеспечения высокой интенсивности теплопередачи является вынужденная конвекция. В некоторых случаях рабочие характеристики подобных устройств становятся еще лучше благодаря сочетанию конвекции и фазовых переходов (например, кипения воды).
Несмотря на это, в теплообменнике также нужны твердые тела, которые разделяют жидкости и позволяют им передавать тепло, но не смешиваться друг с другом.
Поле течения и температуры в кожухотрубном теплообменнике демонстрирует процесс теплопередачи между двумя разделенными тонкой металлической стенкой жидкостями.
Радиаторы обычно изготавливают из металла, обладающего высокой теплопроводностью (например, меди или алюминия). Они рассеивают тепло, увеличивая площадь поверхности теплообмена между твердотельной частью конструкции и окружающей ее жидкостью.
Поле температуры в блоке питания. Температура снижается за счет охлаждения воздухом, продуваемым с помощью вентилятора и перфорированной решетки. Два алюминиевых ребра используются для увеличения площади поверхности теплообмена между потоком воздуха и электронными компонентами.
Энергосбережение
Процессы теплообмена в жидкостях и твердых телах также могут быть объединены для сокращения тепловых потерь в различных устройствах. Поскольку большинство газов (особенно при низком давлении) обладают малой теплопроводностью, они могут использоваться для теплоизоляции… если только они не находятся в движении. Чаще всего именно газы выбирают в качестве изоляционного материала из-за их малой плотности. В любом случае важно ограничить теплопередачу посредством конвекции, уменьшая интенсивность свободной конвекции. Продуманное размещение перегородок и небольших полостей позволяет регулировать свободную конвекцию. Применение этих же принципов в микроскопических масштабах приводит к идее теплоизолирующей пены, в которой небольшие воздушные полости (пузырьки) заключены внутри пенистого материала (например, полиуретана), что обеспечивает прекрасные изоляционные характеристики материала и его малый вес.
Поперечное сечение окна (слева) и увеличенная область оконной рамы (справа).
Показатели температуры в оконной раме и поперечном сечении остекления согласно стандарту ISO 10077-2:2012 (тепловые характеристики окон).
Взаимодействие твердых тел и жидкостей
Граница жидкости и твердого тела
Поле температуры и тепловой поток на границе взаимодействия жидкости и твердого тела остаются непрерывными. Однако поле температуры может быстро изменяться в движущейся жидкости: у поверхности твердого тела температуры жидкости и твердого тела близки; чем дальше от границы, тем ближе температура жидкости к температуре на входе или к температуре окружающей среды. Расстояние, на котором температура жидкости изменяется от температуры твердого тела до температуры окружающей среды, называется тепловым пограничным слоем. Относительные размеры теплового и динамического пограничных слоев отражаются в величине числа Прандтля (Pr=C_p \mu/k): для того чтобы оно было равно единице, толщины теплового и динамического пограничных слоев должны совпадать. Более толстый динамический погранслой приводит к тому, что число Прандтля становится больше единицы. Верно и обратное: при числе Прандтля меньше единицы толщина теплового пограничного слоя превышает толщину динамического пограничного слоя. Число Прандтля для воздуха при атмосферном давлении и 20 °C равняется 0,7. Это объясняется тем, что для воздуха размеры динамического и теплового пограничного слоев схожи, при этом толщина динамического погранслоя чуть меньше толщины теплового. Для воды при температуре 20 °C число Прандтля составляет около 7, поэтому в воде изменение температуры рядом со стенкой происходит быстрее, чем изменение скорости.
Нормализованные профили температуры (красный) и скорости (синий) для свободной конвекции воздуха рядом с холодной твердой поверхностью.
Свободная конвекция
Свободная конвекция возникает тогда, когда жидкость приводится в движение силами плавучести. В зависимости от ожидаемых тепловых характеристик естественная конвекция может быть как полезной (например, в случае охлаждения), так и нежелательной (например, свободная конвекция в слое термоизоляции).3
Число Рэлея может быть выражено через числа Прандтля и Грасгофа как Ra=Pr Gr.
Когда величина числа Рэлея невелика (обычно <103), явлением свободной конвекции можно пренебречь, так как теплопередача происходит посредством теплопроводности жидкости. Для больших значений числа Рэлея необходимо учитывать теплопередачу посредством конвекции.
Когда силы плавучести значительно выше вязкостных сил, режим потока становится турбулентным, в противном случае поток остается ламинарным. На переход между двумя данными режимами указывает критическое значение числа Грасгофа, величина которого составляет 109. Толщину теплового пограничного слоя можно вычислить приближенно при условии, что известно характерное расстояние перепада температуры между твердой стенкой и объемом жидкости: \delta_\mathrm{T} \approx \frac{L}{\sqrt[4\,]{Ra}}, когда Pr по порядку равно или больше единицы.
Профиль температуры при свободной конвекции в стакане холодной воды, контактирующем с горячей поверхностью .
Вынужденная конвекция
При вынужденной конвекции поток приводится в движение воздействием внешних сил (например, ветра) или устройств (например, вентиляторов или насосов), которые преобладают над силами плавучести.
В этом случае режим потока может быть охарактеризован, аналогично изотермическому потоку, числом Рейнольдса Re= \frac{\rho U L}{\mu}. Число Рейнольдса представляет отношение инерционных и вязкостных сил. При малых значениях числа Рейнольдса преобладают вязкостные силы, соответственно, поток ламинарный. При высоких значениях числа Рейнольдса силы внутреннего трения в системе невелики, благодаря чему наблюдаются незначительные возмущения. В случае если значение числа Рейнольдса будет достаточно высоким, поток перейдет в турбулентный режим.
Оценить толщину динамического пограничного слоя можно с помощью числа Рейнольдса \delta_\mathrm{M} \approx \frac{L}{\sqrt{Re}}.
Линии тока и профиль температуры вокруг радиатора, охлаждаемого вынужденной конвекцией.4). Когда окружающие поверхности имеют различную температуру, теплообмен определяется угловыми коэффициентами.
Несмотря на это, как жидкости, так и твердые тела могут быть прозрачными или полупрозрачными. Таким образом, излучение может возникнуть и в жидкости, и в твердых телах. В активных (или недиатермических) средах излучение взаимодействует со средой (твердым телом или жидкостью), которая поглощает, испускает или рассеивает энергию.
Несмотря на то, что при небольшой разнице температур и малой излучательной способности можно пренебречь теплопередачей посредством излучения, она играет ключевую роль в прикладных задачах со значительными перепадами температур или сильно выраженной излучательной способностью.
Сравнение показателей температуры для радиатора с поверхностной излучательной способностью \varepsilon = 0 (слева) и \varepsilon = 0,9 (справа).
Заключение
В большей части практических задач процессы теплопередачи в твердых телах и жидкостях объединены. Причина этого в том, что, как правило, рассматриваемые жидкости обтекают твердые тела или текут между твердых стенок, а твердые тела, в свою очередь, обычно погружены в жидкость. Точное описание режимов теплопередачи, свойств материала, режимов течения и конфигураций геометрии позволяет выполнять анализ полей температуры и процессов теплопередачи. Подобное описание служит также отправной точкой для численного моделирования, которое может использоваться для расчета явлений теплопередачи или для проверки различных конфигураций конструкции для улучшения тепловых характеристик того или иного изделия.
Примечания
C_{p}: теплоемкость при постоянном давлении (единицы СИ: Дж/(кг⋅K))
g: ускорение свободного падения (единицы СИ: м/с2)
Gr: число Грасгофа (безразмерная величина)
k: теплопроводность (единицы СИ: Вт/(м⋅K))
L: характерный размер (единицы СИ: м)
n: показатель преломления (безразмерная величина)
p_\mathrm{A}: абсолютное давление (единицы СИ: Па)
Pr: число Прандтля (безразмерная величина)
q: плотность теплового потока (единицы СИ: Вт/м2)
Q: объемный источник теплоты (единицы СИ: Вт/м3)
Ra: число Рэлея (безразмерная величина)
S: тензор скоростей деформации (единицы СИ: 1/с)
T: поле температуры (единицы СИ: K)
T_\mathrm{amb}: температура окружающей среды (единицы СИ: K)
\bold{u}: поле скорости (единицы СИ: м/с)
U: характерная величина скорости (единицы СИ: м/с)
\alpha_{p}: коэффициент теплового расширения (единицы СИ: 1/K)
\delta_\mathrm{M}: толщина инерционного граничного слоя (единицы СИ: м)
\delta_\mathrm{T}: толщина теплового слоя (единицы СИ: м)
\Delta T: характерная разность температур (единицы СИ: K)
\varepsilon: излучательная способность поверхности (безразмерная величина)
\rho: плотность (единицы СИ: кг/м3)
\sigma: постоянная Стефана — Больцмана (единицы СИ: Вт/(м2⋅К4))
\tau: тензор вязких напряжений (единицы СИ: Н/м2)
теплопроводность, конвекция, излучение – FIZI4KA
1. Существуют три вида теплопередачи: теплопроводность, конвекция и излучение.
Теплопроводность можно наблюдать на следующем опыте. Если к металлическому стержню с помощью воска прикрепить несколько гвоздиков (рис. 68), закрепить один конец стержня в штативе, а другой нагревать на спиртовке, то через некоторое время гвоздики начнут отпадать от стержня: сначала отпадет тот гвоздик, который ближе к спиртовке, затем следующий и т.д.
Это происходит потому, что при повышении температуры воск начинает плавиться. Поскольку гвоздики отпадали не одновременно, а постепенно, можно сделать вывод, что температура стержня повышалась постепенно. Следовательно, постепенно увеличивалась и внутренняя энергия стержня, она передавалась от одного его конца к другому.
2. Передачу энергии при теплопроводности можно объяснить с точки зрения внутреннего строения вещества. Молекулы ближнего к спиртовке конца стержня получают от неё энергию, их энергия увеличивается, они начинают более интенсивно колебаться и передают часть своей энергии соседним частицам, заставляя их колебаться быстрее. Те, в свою очередь передают энергию своим соседям, и процесс передачи энергии распространяется по всему стержню. Увеличение кинетической энергии частиц приводит к повышению температуры стержня.
Важно, что при теплопроводности не происходит перемещения вещества, от одного тела к другому или от одной части тела к другой передается энергия.
Процесс передачи энергии от одного тела к другому или от одной части тела к другой благодаря тепловому движению частиц называется теплопроводностью.
3. Разные вещества обладают разной теплопроводностью. Если на дно пробирки, наполненной водой, положить кусочек льда и верхний её конец поместить над пламенем спиртовки, то через некоторое время вода в верхней части пробирки закипит, а лёд при этом не растает. Следовательно, вода, так же как и все жидкости, обладает плохой теплопроводностью.
Ещё более плохой теплопроводностью обладают газы. Возьмём пробирку, в которой нет ничего, кроме воздуха, и расположим её над пламенем спиртовки. Палец, помещённый в пробирку, не почувствует тепла. Следовательно, воздух и другие газы обладает плохой теплопроводностью.
Хорошими проводниками теплоты являются металлы, самыми плохими — сильно разреженные газы. Это объясняется особенностями их строения. Молекулы газов находятся друг от друга на расстояниях, больших, чем молекулы твёрдых тел, и значительно реже сталкиваются. Поэтому и передача энергии от одних молекул к другим в газах происходит не столь интенсивно, как в твёрдых телах. Теплопроводность жидкости занимает промежуточное положение между теплопроводностью газов и твёрдых тел.
4. Как известно, газы и жидкости плохо проводят теплоту. В то же время от батарей парового отопления нагревается воздух. Это происходит благодаря такому виду теплопроводности, как конвекция.
Если на дно колбы с водой аккуратно через трубочку опустить кристаллик марганцево-кислого калия и нагревать колбу снизу так, чтобы пламя касалось её в том месте, где лежит кристаллик, то можно увидеть, как со дна колбы будут подниматься окрашенные струйки воды. Достигнув верхних слоёв воды, эти струйки начнут опускаться.
Объясняется это явление так. Нижний слой воды нагревается от пламени спиртовки. Нагреваясь, вода расширяется, её объём увеличивается, а плотность соответственно уменьшается. На этот слой воды действует архимедова сила, которая выталкивает нагретый слой жидкости вверх. Его место занимает опустившийся вниз холодный слой воды, который, в свою очередь, нагреваясь, перемещается вверх и т.д. Следовательно, энергия в данном случае переносится поднимающимися потоками жидкости (рис. 69).
Подобным образом осуществляется теплопередача и в газах. Если вертушку, сделанную из бумаги, поместить над источником тепла (рис. 70), то вертушка начнёт вращаться. Это происходит потому, что нагретые менее плотные слои воздуха под действием выталкивающей силы поднимаются вверх, а более холодные движутся вниз и занимают их место, что и приводит к вращению вертушки.
Теплопередача, которая осуществляется в этом опыте и в опыте, изображенном на рисунках 69, 70, называется конвекцией.
Конвекция — вид теплопередачи, при котором энергия передаётся слоями жидкости или газа.
Конвекция связана с переносом вещества, поэтому она может осуществляться только в жидкостях и газах; в твёрдых телах конвекция не происходит.
5. Третий вид теплопередачи — излучение. Если поднести руку к спирали электроплитки, включённой в сеть, к горящей электрической лампочке, к нагретому утюгу, к батарее отопления и т.п., то можно явно ощутить тепло.
Если закрепить металлическую коробочку (теплоприёмник), одна сторона которой блестящая, а другая чёрная, в штативе, соединить коробочку с манометром, а затем налить в сосуд, у которого одна поверхность белая, а другая чёрная, кипяток, то, повернув сосуд к чёрной стороне теплоприёмника сначала белой стороной, а затем чёрной, можно заметить, что уровень жидкости в колене манометра, соединённом с теплоприёмником, понизится. При этом он сильнее понизится, когда сосуд обращён к теплоприёмнику чёрной стороной (рис. 71).
Понижение уровня жидкости в манометре происходит потому, что воздух в теплоприёмнике расширяется, это возможно при нагревании воздуха. Следовательно, воздух получает от сосуда с горячей водой энергию, нагревается и расширяется. Поскольку воздух обладает плохой теплопроводностью и конвекция в данном случае не происходит, т.к. плитка и теплоприёмник располагаются на одном уровне, то остаётся признать, что сосуд с горячей водой излучает энергию.
Опыт также показывает, что чёрная поверхность сосуда излучает больше энергии, чем белая. Об этом свидетельствует разный уровень жидкости в колене манометра, соединённом с теплоприёмником.
Чёрная поверхность не только излучает больше энергии, но и больше поглощает. Это можно также доказать экспериментально, если поднести включённую в сеть электроплитку сначала к блестящей стороне тенлоприёмника, а затем к чёрной. Во втором случае жидкость в колене манометра, соединённом с теплоприёмником, опустится ниже, чем в первом.
Таким образом, чёрные тела хорошо поглощают и излучают энергию, а белые или блестящие плохо испускают и плохо поглощают её. Они хорошо энергию отражают. Поэтому понятно, почему летом носят светлую одежду, почему дома на юге предпочитают красить в белый цвет.
Путём излучения энергия передаётся от Солнца к Земле. Поскольку пространство между Солнцем и Землёй представляет собой вакуум (высота атмосферы Земли много меньше расстояния от неё до Солнца), то энергия не может передаваться ни путём конвекции, ни путём теплопроводности. Таким образом, для передачи энергии путём излучения не требуется наличия какой-либо среды, эта теплопередача может осуществляться и в вакууме.
ПРИМЕРЫ ЗАДАНИЙ
Часть 1
1. В твёрдых телах теплопередача может осуществляться путём
1) конвекции
2) излучения и конвекции
3) теплопроводности
4) конвекции и теплопроводности
2. Теплопередача путём конвекции может происходить
1) только в газах
2) только в жидкостях
3) только в газах и жидкостях
4) в газах, жидкостях и твёрдых телах
3. Каким способом можно осуществить теплопередачу между телами, разделёнными безвоздушным пространством?
1) только с помощью теплопроводности
2) только с помощью конвекции
3) только с помощью излучения
4) всеми тремя способами
4. Благодаря каким видам теплопередачи в ясный летний день нагревается вода в водоёмах?
1) только теплопроводность
2) только конвекция
3) излучение и теплопроводность
4) конвекция и теплопроводность
5. Какой вид теплопередачи не сопровождается переносом вещества?
1) только теплопроводность
2) только конвекция
3) только излучение
4) только теплопроводность и излучение
6. Какой(-ие) из видов теплопередачи сопровождается(-ются) переносом вещества?
1) только теплопроводность
2) конвекция и теплопроводность
3) излучение и теплопроводность
4) только конвекция
7. В таблице приведены значения коэффициента, который характеризует скорость процесса теплопроводности вещества, для некоторых строительных материалов.
В условиях холодной зимы наименьшего дополнительного утепления при равной толщине стен требует дом из
1) газобетона
2) железобетона
3) силикатного кирпича
4) дерева
8. Стоящие на столе металлическую и пластмассовую кружки одинаковой вместимости одновременно заполнили горячей водой одинаковой температуры. В какой кружке быстрее остынет вода?
1) в металлической
2) в пластмассовой
3) одновременно
4) скорость остывания воды зависит от её температуры
9. Открытый сосуд заполнен водой. На каком рисунке правильно изображено направление конвекционных потоков при приведённой схеме нагревания?
10. Воду равной массы нагрели до одинаковой температуры и налили в две кастрюли, которые закрыли крышками и поставили в холодное место. Кастрюли совершенно одинаковы, кроме цвета внешней поверхности: одна из них чёрная, другая блестящая. Что произойдёт с температурой воды в кастрюлях через некоторое время, пока вода не остыла окончательно?
1) Температура воды не изменится ни в той, ни в другой кастрюле.
2) Температура воды понизится и в той, и в другой кастрюле на одно и то же число градусов.
3) Температура воды в блестящей кастрюле станет ниже, чем в чёрной.
4) Температура воды в чёрной кастрюле станет ниже, чем в блестящей.
11. Учитель провёл следующий опыт. Раскалённая плитка (1) размещалась напротив полой цилиндрической закрытой коробки (2), соединённой резиновой трубкой с коленом U-образного манометра (3). Первоначально жидкость в коленах находилась на одном уровне. Через некоторое время уровни жидкости в манометре изменились (см. рисунок).
Выберите из предложенного перечня два утверждения, которые соответствуют результатам проведённых экспериментальных наблюдений. Укажите их номера.
1) Передача энергии от плитки к коробке осуществлялась преимущественно за счёт излучения.
2) Передача энергии от плитки к коробке осуществлялась преимущественно за счёт конвекции.
3) В процессе передачи энергии давление воздуха в коробке увеличивалось.
4) Поверхности чёрного матового цвета по сравнению со светлыми блестящими поверхностями лучше поглощают энергию.
5) Разность уровней жидкости в коленах манометра зависит от температуры плитки.
12. Из перечня приведённых ниже высказываний выберите два правильных и запишите их номера в таблицу.
1) Внутреннюю энергию тела можно изменить только в процессе теплопередачи.
2) Внутренняя энергия тела равна сумме кинетической энергии движения молекул тела и потенциальной энергии их взаимодействия.
3) В процессе теплопроводности осуществляется передача энергии от одних частей тела к другим.
4) Нагревание воздуха в комнате от батарей парового отопления происходит, главным образом, благодаря излучению.
5) Стекло обладает лучшей теплопроводностью, чем металл.
Ответы
Виды теплопередачи: теплопроводность, конвекция, излучение
3.4 (68%) 25 votesТеплопередача и теплообменники
Теплопередача (или сложный теплообмен) — это процесс передачи теплоты от одного теплоносителя (жидкости или газа), имеющего более высокую температуру Л, к другому теплоносителю (жидкости или газу), имеющему более низкую температуру 12, через разделяющую их стенку (поверхность теплообмена).»г117!) — 1] раз.
Теплообменники — это технические устройства для передачи теплоты от одного теплоносителя к другому. Необходимость в таких устройствах для силовых установок вытекает, в частности, из второго закона термодинамики, по которому от рабочего тела необходимо отводить часть теплоты к теплоприемнику, которым обычно является атмосферный воздух. Поэтому и на тепловозах применяется целый ряд различных тешюобменных аппаратов, в которых теплота передается от жидкости к жидкости (например, от масла к воде — водомасляные теплообменники), от жидкости (воды или масла) — к воздуху (водо- и масло воздушные радиаторы), от воздуха к воздуху (воздуховоздушные теплообменники наддувочного воздуха). Все эти конкретные устройства рассмотрены в гл. 6.
Отметим общие принципы их устройства и работы. Большинство теплообменников представляет собой пучки труб малого диаметра. Распределение потока теплоносителя (жидкости) по большому числу трубок малого диаметра позволяет значительно увеличить (развить) при том же общем объеме устройства величину поверхности теплообмена. Со Рис. 3.17. Конвективный теплообмен передача через плоскую стенку стороны меньшего коэффициента теплоотдачи теплоотдающая поверхность труб увеличивается также за счет оребрения.
Теплообменники типа «жидкость- жидкость» выполняются обычно в виде цилиндрического кожуха, в котором между двумя решетками размещается трубный пучок. Теплообменники типа «жидкость-воздух» для возможности лучшего контакта с атмосферным воздухом выполняются в виде развернутых плоских панелей (радиаторов).
В зависимости от взаимного характера движения теплоносителей различают теплообменники прямоточные, в которых теплоносители движутся попутно и разность температур между ними уменьшается по длине теплообменника; противо-точные, где движение теплоносителей встречное, и перекрестноточные с взаимно перпендикулярным течением теплоносителей.
Лучшие технико-экономические показатели имеют противоточные Рнс. 3.18. Оребренне теплоотдающей поверхности
I
-I
/У11У11/ГЛ
/Л <*7
теплообменники, однако такую схему движения трудно обеспечить, особенно если один из теплоносителей — воздух.
Эффективность теплообменников в эксплуатации зависит от состояния их теплопередающих поверхнос-тей. Наибольшее влияние на величину количества передаваемого тепла оказывает загрязнение этих поверхностей, например, из-за осаждения пыли с воздушной стороны, выделения вязких осадков из масла или солей (накипи) из воды. Любой дополнительный слой на теплопере-дающей поверхности является дополнительным термическим сопротивлением типа б/Я в знаменателе формулы (3.67), причем, несмотря на малую толщину осадков, их термическое сопротивление оказывается очень большим потому, что их теплопроводность очень мала. В результате теплопередача загрязненных теплообменников резко сокращается.
⇐ | Теория теплообмена | | Тепловозы: Основы теории и конструкция | | Принципы устройства и работы двигателей внутреннего сгорания и классификация двигателей | ⇒
Процессы теплопередачи — Справочник химика 21
Структуру математической модели составляет математическое описание процесса, которое представляет собой систему уравнений, причем каждое из них может быть любого вида (алгебраическое, трансцендентное, дифференциальное, интегральное ит. п.)[811. Приведенные ранее математические описания процесса теплопередачи являются частными, пригодными только для отдельных конкретных случаев, что очень затрудняет составление алгоритмов теплового расчета для всех промышленных аппаратов. Универсальная математическая модель процесса теплопередачи в элементе охватывает все известные в технике элементарные схемы тока. Модель статическая и получена из уравнений теплового баланса, теплопередачи и уравнения Н. И. Белоконя (1411 для среднего температурного напора. [c.113]
Процесс массопередачи подобен процессу теплопередачи. По аналогии с основным уравнением теплопередачи можно записать основное уравнение массопередачи. [c.53]
Процесс теплопередачи в камере конвекции складывается из передачи тепла от газового потока к конвекционным трубам конвекцией и радиацией. Основное значение в конвекционной камере имеет конвекционный теплообмен. Однако излучение газов и кладки также заметно влияет на процесс теплоотдачи. [c.127]
Заливка трубок в стенки котла является относительно трудной в технологическом отношении операцией, осуществление которой часто сопровождается браком даже тогда, когда с наружной стороны не заметно никаких дефектов. Под влиянием различного теплового расширения чугуна и стали оба металла в некоторых точках часто не соединяются в достаточной степени. В результате этого образуется щель, которая в значительной мере ухудшает процесс теплопередачи (пример 27). [c.189]
В теплообменниках, подогревателях (вообще в процессе теплопереноса между двумя фазами, разделенными перегородкой) появляются твердые отложения (выделения) со стороны протекающей жидкости. Это могут быть отложения солей (из жесткой воды), смолы, ржавчины или других механических загрязнений. Такие отложения приводят к замедлению процесса теплопередачи через стенки, причем отсюда следует, что коэффициент перехода является функцией времени а ( ), ( ) и 7 (1). [c.311]
В ряде случаев скорость одной из стадий (диффузии или химической реакции) настолько мала, что она определяет скорость процесса в целом. Аналогичное положение характерно для некоторых процессов теплопередачи или массообмена. Определяющую стадию можно обнаружить, экспериментально изучая влияние различных переменных на скорость самого процесса. Так, например, если суммарная скорость процесса быстро возрастает с увеличением температуры в соответствии с законом Аррениуса, то определяющей стадией является химическая реакция. В других случаях скорость процесса может изменяться с изменением величины поверхности раздела фаз или расходов веществ в соответствии с закономерностями, характерными для процесса массопередачи. [c.174]
Зависимость верхней границы реальности процесса теплопередачи в элементе от функции водяных эквивалентов. [c.116]
В промышленных процессах теплопередача между поверхностью частиц и жидкостью или газом имеет важное значение в регенераторах и нагревателях с твердым теплоносителем, а также в таких операциях, как сжигание угля, отложившегося на поверхности катализатора. [c.270]
К сложному процессу теплопередачи относятся три вида теплообмена теплопроводность, конвекция и тепловое излучение (лучеиспускание, радиация). [c.49]
В изучении процесса теплопередачи в основном распространены следующие критерии [c.57]
Распределение температур в процессе теплопередачи от пара через стенку к кипящему раствору показано на рис. У.2. [c.90]
МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ПРОЦЕССА ТЕПЛОПЕРЕДАЧИ В РЯДУ ЭЛЕМЕНТОВ И ПАР ЭЛЕМЕНТОВ [c.166]
II Бринка удовлетворительно описывает процесс теплопередачи в каплях диаметром до 0,8—0,9 см [112, ИЗ]. Результаты сопоставления экспериментальных величин [47, 112, 113] с теоретической кривой Кронига и Бринка приведены на рпс. 11.17. [c.222]
Процесс теплопередачи описывается системой уравнений [c.107]
Однако следует отметить, что выражение (6,129) является более общим, пригодным для любой схемы тока, поэтому его следует использовать в расчетах при проверке реальности процесса теплопередачи в элементе. На рис. 25 показано изменение верхней границы реальности безразмерного комплекса Р гкс = Р (6,130) в зависимости от функции водяных эквивалентов А [c.115]
На рис. 39—42 приведены построенные нами универсальные графики, пригодные для расчета функции эффективности Фэ (и тем более эффективности е) для всех без исключения известных схем тока. Универсальность их следует из универсальности описанной ранее модели процесса теплопередачи в элементе. [c.151]
Уравнения (6,241), (6,242) адекватны условию реальности процесса теплопередачи (6,131). [c.157]
Условие реальности процесса теплопередачи (6,238) выполняется при любых р (6,239), R (6,240) и [c.158]
УСЛОВИЯ РЕАЛЬНОСТИ ПРОЦЕССА ТЕПЛОПЕРЕДАЧИ В РЯДУ [c.177]
МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ПРОЦЕССА ТЕПЛОПЕРЕДАЧИ В РЕГУЛЯРНЫХ КОМПЛЕКСАХ [c.185]
Математической моделью процесса теплопередачи в комплексе является система уравнений [c.185]
Структура БС — Лр—2 показана на рис. 62. В БС — Мр — 2 шесть раз используется структура БС — е расчета эффективности комплексов Фэк при заданных р, Uo, Ыв- Структура БС —бф (рис. 63) построена на использовании уравнений (7,34), (7,38), (7,41), (8,42), (8,43), (8,52), (8,53) с проверкой реальности процесса теплопередачи в комплексе с помощью условий Фэр (О, [c.195]
Рассмотрим пути решения более общей задачи моделирования процесса теплопередачи в произвольных комплексах теплообменных аппаратов. Будем исходить из того, что в таких комплексах среда О (отдающая тепло) распределяется на т ветвей Оь [c.206]
В случае экзотермической реакции в реакторе периодического действия процесс теплопередачи происходит одновременно с реакцией. [c.107]
Химические реакции всегда связаны с разнообразными физическими процессами теплопередачей, поглощением или излуче-ниед электромагнитных колебаний (свет), электрическими явлениями и др. Так, смесь веществ, в которой протекает какая-либо химическая реакция, выделяет энергию во внешнюю среду в форме теплоты или поглощает ее извне. Поглощение света фотографической пленкой вызывает в ней химический процесс образования скрытого изображения. Химические реакции, протекающие в аккумуляторах между электродами и раствором, являются причино11 возникновения электрического тока. При повышении температуры вещества увеличивается интенсивность колебательных движении внутри молекул, и связь между атомами в молекуле ослабляется после перехода известной критической границы происходит диссоциация молекулы или взаимодействие ее с другими молекулами при столкновении, т. е. химический процесс. Число аналогичных примеров легко увеличить. Во всех случаях имее место тесная связь физических и химических явлений, их взаимодействие. [c.11]
Найдем скорость изменения энтропии при процессе теплопередачи через стержень. Если стержень изолирован вдоль своей длины в тепловом отношении, то при TauHOHapHOMJпроцессе энтропия его постоянна, а суммарное возрастание энтропии в единицу времени связано с процессами передачи теплоты резервуарами на концах стержня и равно в соответствии с уравнением (III, 36) [c.112]
Все теплообменные аппараты по способу передачи тепла могут быть разделены на две большие группы поверхностные аппараты и аппараты смешения. В повфхностных тепло-обменных аппаратах передача тепла от одного теплоносителя к другому осуществляется с участием твердой сте.нки. Процесс теплопередачи в смесительных теплообменных аппаратах осуществляется путем непосредственного контакта и смешения жидких и газообразных теплоносителей. [c.7]
Существуют три параллельных механизма воздействия химической реакции на скорость массопередачи. Во-первых, наличие в системе химической реакции, как правило, оказывает влияние на установление равновесного распределения переходящего компонента между фазами и тем самым иа движущую силу процесса массопередачи независимо от способа ее выражения. Во-вторых, химическая реакция оказывает влияние на величину коэффициента массопередачи независимо от способа его выражения, т. е. независимо от способа выражения движущей силы процесса. Взаимное влияние химической реакции и процессов переноса рассматривается термодинамикой необратимых процессов. Общий подход к вопросу разработан Де Гроотом и Мазуром [1], которые рассмотрели процесс теплопередачи в системе с химической реакцией. Вопросы взаимного влияния массопередачи и химической реакции с позиций термодинамики необратимых процессов рассматривались Оландером [2], а также Фридлендером и Келлером [3]. Хотя количественные результаты были получены 13] лишь для области очень малых отклонений от химического равновесия, однако качественно было показано, что наличие объемной реакции приводит к увеличению потока массы. [c.226]
На рис. 1.42 дапы графики для определения поправочного коэффициента е для типовых кожухотрубных теилообменников Коэффициент теплопередачи. Этот показатель характеризует интенсивность процесса теплопередачи в теплообменном аппарате. В отсутствие загрязнений коэффициент теплопередачи /([Вт/(м—К)1 определяют из соотношения [c.115]
Описанный нами [36] метод расчета конечных температур свободен от указанных недостатков. Он пригоден для любых известных схем тока в элементе, алгоритмически прост и может быть использован как при ручном, так и при машинном счете. Метод основан на применении математической модели процесса теплопередачи в элементе. Он обеспечивает решение задач режимного расчета ТР46 — ТР51 согласно классификации задач теплового расчета (см. рис. 15). [c.119]
Проверка реальности границ Пр и условия суш,ествования решения в рамках реальности границ (блоки 3—16). Реальность границ поиска Пр оценивается проверкой реальности процесса теплопередачи при Пр н (блок 5) и Лр акс (блок 9). При реальных границах проверяется условие существования решения Пр (блок 11). Если решения нет ( ф мин Фмакс>0), то обе границы одновременно сдвигаются вверх удвоением Лр и Лр акс (блоки 12—14) вплоть до удовлетворения условия существования решения [c.195]
Поиск Пр (блока 40—51). Всеми предыдущими расчетными процедурами обеспечена реальность границ поиска Лр и проверено условие существования решения в рамках этих границ. Значение Пр ищется также методом половинного деления интервала с точностью до вЛрдоп (условие нет блока 45). При достижении требуемой точности расчета Лр вырабатывается признак реальности процесса теплопередачи в комплекс П,/ =0. [c.197]
Процессы теплопередачи могут существовать как в виде самостоятельных технологических операций, например, нагревание или охлаждение реакционной массы до заданной тсмпера-т/ры, так и протекать одновременно с другими процессами (при- vepoM может служить отвод тепла экзотермической реакции в изотермическом процессе). Процесс теплопередачи органи.зует-С1 с различными целями например, для нагревания или охлаждения реагентов до температуры, при которой основная химическая реакция протекает с требуемой скоростью или достигается наибольший выход целевого продукта, для изменения arpe-Г.1ТН0Г0 состояния и 1и физико-химических свойств веи ества. [c.16]
В каких веществах происходит теплопередача. Теплопередача
Описание видеоурока
Процесс изменения внутренней энергии без совершения работы называется теплопередачей. Без совершения работы тела могут нагреваться и остывать. Без совершения работы могут перемешиваться теплые и холодные слои жидкостей и газов. Без совершения работы может изменяться внутренняя энергия тела путем излучения, в том числе и через пустоту — вакуум. Рассмотрим виды теплопередачи.
Теплопроводность — явление передачи энергии от более нагретой части тела к менее нагретой в результате теплового движения и взаимодействия частиц, из которых состоит тело.
Можно провести опыт, сконструировав установку: на треноге помещается кольцо из тонкой оцинкованной жести. В кольцо под углом 120 градусов вставляются (прикрепляются) три проволоки (медь, алюминий и сталь) в виде спиц, предварительно нужно окунуть их в расплавленный воск от старых свечей. Пока воск на них застывает, нужно прикрепить хотя бы через сантиметр сапожные гвоздики шляпками к стержню. Три начала спиц близко расположены в середине кольца. Зажжем спиртовку (или таблетку сухого спирта), поместим на подставке так, чтобы три начала спиц одинаково нагревались. И наблюдаем: через некоторое время начинает таять воск и первыми начинают отпадать гвоздики на медной спице, чуть позже — на алюминиевой и ещё позже — на железной.
Металлы обладают хорошей теплопроводностью, плохой теплопроводностью обладают пластмасса, резина, стекло, дерево, плексиглас, большинство изоляторов.
Второй вид теплопередачи — конвекция.
Конвекция — процесс теплообмена, осуществляемый путём переноса энергии потоками жидкости или газа. Проведём опыт: в колбу налить подкрашенную воду: капнуть раствора медного купороса или кристаллик марганцовки и снизу на спиртовке (или таблетка сухого спирта, или свеча) нагревать колбу. Через некоторое время можно заметить перемещение слоёв воды снизу вверх (а потом и по кругу).
Воздух — плохой проводник тепла, но он в комнате нагревается сам и, перемешивая тёплые и холодные слои, нагревает всю комнату. Под окнами находятся батареи центрального отопления. Здесь прикоснувшиеся к чугунной батарее, слои теплого воздуха по закону Архимеда, вытесняются холодными и поднимаются вверх. На освободившееся место подходят холодные слои, прикасаясь к поверхности батареи, нагреваются, и опять идут вверх и т.д. Слои теплого и холодного воздуха перемешиваются и нагревают всю комнату.
Третий вид теплопередачи — излучение. Излучение — перенос энергии от одного тела к другому, обусловленный процессами испускания, распространения, рассеяния и поглощения электромагнитного излучения. Можно показать распространение солнечного света и тепла, проговорив, что излучение передаётся и через вакуум. Светлая поверхность отражает излучение, а темная поглощает. Поэтому летом нужно использовать светлую одежду, а зимой — темную. Поэтому самолеты и ракеты красят светлой краской, цистерны с перевозимым топливом — то же красят в светлые тона.
Трубы больших котельных строят высокими для того, чтобы «тяга» была лучше: столб теплого воздуха в трубе быстрее поднимается вверх, на его место снизу в топку быстрее поступает воздух с новой порцией кислорода и топливо горит лучше, нагрев воды быстрее, снабжение горячей водой квартир в системе центрального отопления — более уверенное. В термосе учитываются все три вида теплопередачи, чтобы горячий чай дольше не остывал: колба устанавливается на пластмассе, пробка — из пробкового дерева, т.к. у него теплопроводность минимальная, из двустенной колбы выкачан воздух, чтобы исключить конвекцию; и внутренняя поверхность колбы посеребрена, чтобы отражать внутрь тепловое излучение.
Теплопроводность — это вид теплопередачи, при котором происходит непосредственная передача энергии от частиц (молекул, атомов) более нагретой части тела к частицам его менее нагретой части.
Рассмотрим ряд опытов с нагревом твердого тела, жидкости и газа.
Лучистый теплообмен.
Лучистый теплообмен — это теплообмен, при котором энергия переносится различными лучами.
Это могут быть солнечные лучи, а также лучи, испускаемые нагретыми телами, находящими-ся вокруг нас.
Так, например, сидя около костра, мы чувствуем, как тепло передается от огня нашему телу. Однако причиной такой теплопередачи не может быть ни теплопроводность (которая у воздуха, находящегося между пламенем и телом, очень мала), ни конвекция (так как конвекционные потоки всегда направлены вверх). Здесь имеет место третий вид теплообмена — лучистый теплообмен .
Возьмем небольшую, закопченную с одной стороны, колбу.
Через пробку в нее вста-вим изогнутую под прямым углом стеклянную трубку. В эту трубку, имеющую узкий канал, введем подкрашенную жидкость. Укрепив на трубке шкалу, получим прибор — термоскоп . Этот прибор позволяет обнаружить даже незначительное нагревание воздуха в закопченной колбе.
Если к темной поверхности термоскопа поднести кусок металла, нагретый до высокой температуры, то столбик жидкости переместится вправо. Очевидно, воздух в колбе нагрелся и расши-рился. Быстрое нагревание воздуха в термоскопе можно объяснить лишь передачей ему энергии от нагретого тела. Как и в случае с костром, энергия здесь передалась не теплопроводностью и не конвективным теплообменом. Энергия в данном случае передалась с помощью невидимых лучей, испускаемых нагретым телом. Эти лучи называют тепловым излучением .
Лучистый теплообмен может происходить в полном вакууме. Этим он отличается от других видов теплообмена.
Излучают энергию все тела: и сильно нагретые, и слабо, например, тело человека, печь, электрическая лампочка. Но чем выше температура тела, тем сильнее его тепловое излучение. Излученная энергия, достиг-нув других тел, частично поглощается ими, а частично отражается. При поглощении энергия теплового излучения превращается во внутреннюю энергию тел, и они нагреваются.
Светлые и темные поверхности поглощают энергию по-разному. Так, если в опыте с термоскопом повернуть колбу к нагретому телу сначала закопченной, а затем светлой стороной, то столбик жидкости в первом случае переместится на большее расстояние, чем во втором (см. рисунок выше). Из этого следует, что тела с темной поверхностью лучше поглощают энергию (и, следовательно, сильнее нагреваются), чем тела со светлой или зеркаль-ной поверхностью.
Тела с темной поверхностью не только лучше поглощают, но и лучше излучают энергию.
Способность по-разному поглощать энергию излучения находит широкое применение в техни-ке. Например, воздушные шары и крылья самолетов часто красят серебристой краской, чтобы они меньше нагревались солнечными лучами.
Если же нужно использовать солнечную энергию (например, для нагревания некоторых прибо-ров, установленных на искусственных спутниках), то эти устройства окрашивают в темный цвет.
В естественных условиях передача внутренней энергии тем теплообмена всегда происходит в строго определенном направлении: от тела с более высокой температурой к телу с более низкой температурой. Когда же температуры тел становятся одинаковыми, наступает состояние теплового равновесия: тела обмениваются энергией в равных количествах.
Совокупность явлений, связанных с переходом тепловой энергии из одних частей пространства в другие, который обусловлен различием температур этих частей, называют в общем случае теплообменом. В природе существует несколько видов теплообмена. Существуют три способа передачи количества теплоты от одного тела к другому: теплопроводность, конвекция и излучение.
Теплопроводность.
Поместим в пламя спиртовки конец металлического стержня. К стержню на равных расстояниях друг от друга прикрепим с помощью воска несколько спичек. При нагревании одного конца стержня восковые шарики плавятся, и спички одна за другой падают. Это свидетельствует о том, что, внутренняя энергия передается от одного конца стержня к другому.
Рисунок 1 Демонстрация процесса теплопроводности
Выясним причину этого явления.
При нагревании конца стержня интенсивность движения частиц, из которых состоит металл, возрастает, их кинетическая энергия увеличивается. Вследствие хаотичности теплового движения они сталкиваются с более медленными частицами соседнего холодного слоя металла и передают им часть своей энергии. В результате этого внутренняя энергия передается от одного конца стержня к другому.
Передача внутренней энергии от одной части тела к другой в результате теплового движения его частиц называется теплопроводностью.
Конвекция
Передача внутренней энергии путем теплопроводности происходит главным образом в твердых телах. В жидких и газообразных телах передача внутренней энергии осуществляется и другими способами. Так, при нагревании воды плотность ее нижних, более горячих, слоев уменьшается, а верхние слои остаются холодными и плотность их не изменяется. Под действием сил тяжести более плотные холодные слои воды опускаются вниз, а нагретые поднимаются вверх: происходит механическое перемешивание холодных и нагретых слоев жидкости. Вся вода прогревается. Аналогичные процессы происходят и в газах.
Передача внутренней энергии вследствие механического перемешивания нагретых и холодных слоев жидкости или газа называется конвекцией.
Явление конвекции играет большую роль в природе и технике. Конвекционные потоки вызывают постоянное перемешивание воздуха в атмосфере, благодаря чему состав воздуха во всех местах Земли практически одинаков. Конвекционные течения обеспечивают непрерывное поступление свежих порций кислорода к пламени в процессах горения. Вследствие конвекции происходит выравнивание температуры воздуха в жилых помещениях при отоплении, а также воздушное охлаждение приборов при работе различной радиоэлектронной аппаратуры.
Рисунок 2 Обогрев и выравнивание температуры воздуха в жилых помещениях при отоплении вследствие конвекции
Излучение
Передача внутренней энергии может происходить и путем электромагнитного излучения. Это легко обнаружить на опыте. Включим в сеть электронагревательную печь. Она хорошо обогревает руку, когда мы подносим ее не только сверху, но и сбоку печи. Теплопроводность воздуха очень мала, а конвекционные потоки поднимаются вверх. В этом случае энергия от раскаленной электрическим током спирали в основном передается способом излучения.
Передача внутренней энергии путем излучения осуществляется не частицами вещества, а частицами электромагнитного поля — фотонами. Они не существуют внутри атомов «в готовом виде», подобно электронам или протонам. Фотоны возникают при переходе электронов из одного электронного слоя в другой, расположенный ближе к ядру, и при этом уносят с собой определенную порцию энергии. Достигая другого тела, фотоны поглощаются его атомами и целиком передают им свою энергию.
Передача внутренней энергии от одного тела к другому вследствие ее переноса частицами электромагнитного поля — фотонами, называется электромагнитным излучением. Любое тело, температура которого выше температуры окружающей среды, излучает свою внутреннюю энергию в окружающее пространство. Количество энергии, излучаемое телом в единицу времени, резко возрастает с повышением его температуры.
Рисунок 3 Опыт, иллюстрирующий передачу внутренней энергии горячего чайника через излучение
Рисунок 4 Излучение от Солнца
Явления переноса в термодинамически неравновесных системах. Теплопроводность
В термодинамически неравновесных системах возникают особые необратимые процессы, называемые явлениями переноса, в результате которых происходит пространственный перенос энергии, массы, количества движения. К явлениям переноса относятся теплопроводность (обусловлена переносом энергии), диффузия (обусловлена переносом массы) и внутреннее трение (обусловлено переносом количества движения). Для этих явлений перенос энергии, массы и количества движения всегда происходит в направлении, обратном их градиенту, т. е. система приближается к состоянию термодинамического равновесия.
Если в одной области газа средняя кинетическая энергия молекул больше, чем в другой, то с течением времени вследствие постоянных столкновений молекул происходит процесс выравнивания средних кинетических энергий молекул, т. е., иными словами, выравнивание температур.
Процесс передачи энергии в форме теплоты подчиняется закону теплопроводности Фурье: количество теплоты q, которое переносится за единицу времени через единицу площади, прямо пропорционально — градиенту температуры, равному скорости изменения температуры на единицу длины х в направлении нормали к этой площади:
, (1)
где λ — коэффициент теплопроводности или теплопроводность. Знак минус показывает, что при теплопроводности энергия переносится в сторону убывания температуры. Теплопроводность λ равна количеству теплоты, переносимой через единицу площади за единицу времени при температурном градиенте, равном единице.
Очевидно, что теплота Q, прошедшая посредством теплопроводности через площадь S за время t, пропорциональна площади S, времени t и градиенту температуры :
Можно показать, что
(2)
где с V — удельная теплоемкость газа при постоянном объеме (количество теплоты, необходимое для нагревания 1 кг газа на 1 К при постоянном объеме), ρ — плотность газа, — средняя арифметическая скорость теплового движения молекул, l > — средняя длина свободного пробега.
Т.е. видно от каких причин зависит количество энергии, передаваемое путем теплопроводности, например, из комнаты через стенку на улицу. Очевидно, что из комнаты на улицу передается энергии тем больше, чем больше площадь стенки S, чем больше разность температур Δt в комнате и на улице, чем больше времени t происходит теплообмен между комнатой и улицей и чем меньше толщина стенки (толщина слоя вещества) d: ~.
Кроме того, количество энергии, передаваемое путем теплопроводности, зависит от материала, из которого изготовлена стенка. Различные вещества при одинаковых условиях передают путем теплопроводности разное количество энергии. Количество энергии, которое передается путем теплопроводности через каждую единицу площади слоя вещества за единицу времени при разности температур между его поверхностями в 1°С и при его толщине в 1 м (единицу длины), может служить мерой способности вещества передавать энергию путем теплопроводности. Эту величину называют коэффициентом теплопроводности. Чем больше коэффициент теплопроводности λ, тем больше энергии передается слоем вещества. Наибольшей теплопроводностью обладают металлы, несколько меньшей – жидкости. Наименьшей теплопроводностью обладает сухой воздух и шерсть. Этим и объясняются теплоизолирующие свойства одежды у человека, перьев у птицы и шерсти у животных.
На рисунке показаны три способа теплообмена: теплопроводность, излучение и конвекция. Путём теплопроводности через дно и стенки котелка внутренняя энергия пламени переходит во внутреннюю энергию туристской похлёбки. Путём излучения – во внутреннюю энергию ладоней туриста и других тел. А путём конвекции – во внутреннюю энергию воздуха над костром.
Теплообмен теплопроводностью. Многочисленные опыты показывают: теплопроводность различных веществ различна: при одинаковых условиях они передают теплоту с разной скоростью.
Проделаем опыт (см. рисунок). Две проволоки, например медную и стальную одинаковой длины и толщины, укрепим так, чтобы их концы попали в пламя свечи. Мы увидим, что маленькие гвоздики, приклеенные воском, с медной проволоки начнут падать раньше. Значит, теплота по медной проволоке распространяется быстрее, чем по стальной.
Тела и вещества, способные передавать теплоту с большой скоростью, называются теплопроводниками. К ним в первую очередь относятся все металлы. Большинство газов передают теплоту очень медленно. Теплопроводность жидкостей (кроме жидких металлов) занимает промежуточное положение между теплопроводностью твёрдых тел и газов. Тела и вещества, передающие теплоту с малой скоростью, называются теплоизоляторами. К ним, например, относятся пенопласт, поролон, древесина, мех, вата и др.
Теплообмен конвекцией. На рисунке вы видите тень руки с зажжённой спичкой при освещении её фонариком. Волнистые тени над пламенем создают струйки поднимающегося тёплого воздуха. Это – пример конвекции. Так называют явление возникновения струй или потоков в нагреваемых или охлаждаемых жидкостях и газах (где действует сила Архимеда). Кроме того, с точки зрения термодинамики конвекция – это способ теплообмена, при котором внутренняя энергия переносится потоками неравномерно нагретых веществ.
Теплоообмен конвекцией часто встречается вокруг нас. Например, отопительные батареи располагают вблизи пола, но из-за конвекции тепло распространяется по всей высоте комнаты. Конвективные потоки также возникают в атмосфере, способствуя возникновению ветров и облаков, а также внутри кастрюль, которые нагреваются на кухонной плите, и так далее.
Теплообмен излучением. Известно, что тела, которые нагреты сильнее, чем окружающая среда, способны излучать энергию. Обратимся к опыту (см. рисунок). Нагреем в пламени гвоздь и приблизим его к ладони, не касаясь её, – ладонь почувствует тепло. Освободим вторую руку и приложим ладони друг к другу. Мы почувствуем, что ладонь, находившаяся вблизи раскалённого гвоздя, теплее, чем вторая. То есть происходит переход теплоты от гвоздя к ладони через слой воздуха.
Однако при теплообмене излучением энергия может переноситься без участия вещества. Так, например, энергия Солнца достигает нашей планеты, преодолевая огромные расстояния через космический вакуум, в котором вещество отсутствует.
Обобщим изученное в этом параграфе. При теплообмене конвекцией энергия переносится струями или потоками неравномерно нагретого вещества. При теплообмене теплопроводностью энергия переносится через слой вещества, но само вещество при этом не движется. При теплообмене излучением энергия переносится без участия вещества.
Теплопередача — это важный физический процесс. Он предполагает перенос теплоты и является сложным процессом, который состоит из совокупности простых превращений.
Существуют определенные виды теплопередачи: конвекция, теплопроводность, тепловое излучение.
Особенности процесса
Теория теплообмена является наукой об особенностях передачи теплоты. Теплопередача — это перенос энергии в газообразных, жидких, твердых средах.
Теория о теплоте появилась в середине XVIII века. Ее автором стал М. В. Ломоносов, который сформулировал механическую теорию теплоты, воспользовавшись законом сохранения и превращения энергии.
Варианты теплообмена
Теплопередача — это составная часть теплотехники. Разные тела могут обмениваться своей внутренней энергией в форме теплоты. Вариант теплообмена является самопроизвольным процессом передачи теплоты в свободном пространстве, который наблюдается при неравномерном распределении температур.
Разность в значениях температур является обязательным условием проведения теплообмена. Распространение тепла происходит от тел, имеющих более высокую температуру, к телам, обладающим меньшим ее показателем.
Результаты исследований
Теплопередача — это процесс переноса тепла и внутри твердого тела, но при условии, что есть разность температур.
Многочисленные исследования свидетельствуют о том, что теплопередача ограждающих конструкций является сложным процессом. Для того чтобы упростить изучение сути явлений, связанных с передачей тепла, выделяют элементарные операции: кондукцию, излучение, конвекцию.
Теплопроводность: общая информация
Чаще всего используется какой вид теплопередачи? Переносом вещества внутри тела можно изменить температуру, например, нагревая металлический стержень, увеличить скорость теплового движения атомов, молекул, повысить показатель внутренней энергии, увеличить теплопроводность материала. По мере соударения частиц происходит постепенная передача энергии, в результате чего весь стержень меняет свою температуру.
Если рассматривать газообразные и жидкие вещества, то передача энергии путем теплопроводности в них имеет незначительные показатели.
Конвекция
Такие способы теплопередачи связаны с переносом теплоты при движении в газах или жидкостях из области с одним температурным значением в область с другим ее показателем. Существует подразделение конвекции на два вида: вынужденную и свободную.
Во втором случае происходит перемещение жидкости под воздействием разности в плотностях ее отдельных частей из-за нагревания. К примеру, в помещении от горячей поверхности радиатора холодный воздух поднимается вверх, получая от батареи дополнительное тепло.
В тех случаях, когда для перемещения тепла необходимо применение насоса, вентилятора, мешалки, ведут речь о вынужденной конвекции. Прогревание по всему объему жидкости в этом случае происходит существенно быстрее, нежели при свободной конвекции.
Излучение
Какой вид теплопередачи характеризует изменение температурного показателя в газообразной среде? Речь идет о тепловом излучении.
Именно оно предполагает перенос тепла в виде электромагнитных волн, подразумевающий двойной переход тепловой энергии в излучение, затем обратно.
Особенности передачи тепла
Для того чтобы проводить расчет теплопередачи, необходимо иметь представление о том, что для теплопроводности и конвекции нужна материальная среда, а для излучения в этом нет необходимости. В процессе теплообмена между телами наблюдается уменьшение температуры у того тела, у которого этот показатель имел большую величину.
На такую же точно величину повышается температура холодного тела, что подтверждает полноценный процесс обмена энергией.
Интенсивность теплообмена зависит от разности в температурах между телами, которые обмениваются энергией. Если она практически отсутствует, процесс завершается, устанавливается тепловое равновесие.
Характеристика процесса теплопроводности
Коэффициент теплопередачи связан со степенью нагретости тела. Температурным полем называют сумму показателей температур для разных точек пространства в определенный момент времени. При изменении значения температуры в единицу времени поле является нестационарным, для неизменной величины — стационарным видом.
Изотермическая поверхность
Независимо от температурного поля, всегда можно выявить точки, имеющие одинаковое температурное значение. Геометрическое расположение их образует определенную изотермическую поверхность.
В одной точке пространства не допускается одновременного нахождения двух разных температур, поэтому изотермические поверхности не могут пересекаться между собой. Можно сделать вывод о том, что изменение в теле значения температуры проявляется лишь в тех направлениях, которые пересекают изотермические поверхности.
Максимальный скачок отмечается в направлении нормали к поверхности. Температурный градиент представляет собой отношение наибольшего показателя температур к промежутку между изотермами и является векторной величиной.
Он показывает интенсивность изменения температуры внутри тела, определяет коэффициент теплопередачи. То количество теплоты, которое будет переноситься через любую изотермическую поверхность, называют тепловым потоком.
Под его плотностью подразумевают отношение к единице площади самой изотермической поверхности. Эти величины являются векторами, противоположными по направлению.
Закон Фурье
Он является основным законом теплопроводности. Суть его заключается в пропорциональности плотности теплового потока градиенту температуры.
Коэффициент теплопроводности характеризует способность тел пропускать теплоту, он зависит от физических свойств вещества и его химического состава, влажности, температуры, пористости. Влага при заполнении пор стимулирует повышение теплопроводности. При высокой пористости внутри тела содержится повышенное количество воздуха, что сказывается на уменьшении показателя теплопроводности.
Определенный коэффициент сопротивления теплопередаче есть у всех материалов, найти его можно в справочниках.
Теплопроводность в твердой стенке
В качестве обязательного условия для данного процесса считается разность температур поверхностей стенки. В такой ситуации образуется поток теплоты, который направлен от стенки с большим значением температуры к поверхности стенки с небольшой температурой.
По закону Фурье тепловой поток будет пропорционален площади стенки, а также температурному напору, и обратно пропорционален толщине этой стенки.
Приведенное сопротивление теплопередаче зависит от теплопроводности материала, из которого изготовлены стенки. Если они включают в себя несколько разных слоев, их считают многослойными поверхностями.
В качестве примера подобных материалов можно назвать стены домов, где на кирпичный слой наносят внутреннюю штукатурку, а также внешнюю облицовку. В случае загрязнения наружной поверхности передающей тепловую энергию, к примеру, радиаторов либо двигателей, грязь можно рассмотреть как наложение нового слоя, имеющего незначительный коэффициент теплопроводности.
Именно из-за этого снижается теплообмен, возникает угроза перегревания работающего двигателя. Аналогичный эффект вызывает нагар и накипь. При увеличении количества слоев стенки растет ее максимальное термическое сопротивление, уменьшается величина теплового потока.
Для многослойных стенок распределение температуры является ломаной линией. Во многих теплообменных аппаратах осуществляется прохождение теплового потока через стенки круглых трубок. Если нагревающее тело движется внутри таких трубок, то в таком случае тепловой поток направлен к наружным стенкам от внутренних частей. При наружном варианте наблюдается обратный процесс.
Теплопередача: особенности процесса
Существует взаимодействие между тепловым излучением, конвекцией, теплопроводностью. Например, в процессе конвекции происходит тепловое излучение. Теплопроводность в пористых материалах невозможна без излучения и конвекции.
При проведении практических вычислений деление сложных процессов на отдельные явления не всегда целесообразно и возможно. В основном результат суммарного воздействия нескольких простейших явлений приписывают тому процессу, который считается основным в конкретном случае.
Второстепенные процессы при таком подходе учитывают только для количественных вычислений.
В современных теплообменных аппаратах происходит передача теплоты от одного вида жидкости к другой жидкости через стенку, которая их разделяет. Важным фактором, который влияет на коэффициент теплообмена, является форма стенки. Если она плоская, в таком случае можно выделить три этапа теплопередачи:
- к поверхности стенки от нагревающей жидкости;
- теплопроводностью через стенку;
- к нагреваемой жидкости к поверхности стенки.
Полное термическое сопротивление теплопередачи является величиной, которая обратна коэффициенту теплопередачи.
Заключение
Теплопроводность является процессом передачи внутренней энергии от нагретых участков тела к его холодным частям. Подобный процесс осуществляется с помощью беспорядочно движущихся атомов, молекул, электронов. Такой процесс может происходить в телах, которые имеют неоднородное распределение значений температур, но будет отличаться в зависимости от агрегатного состояния рассматриваемого вещества.
Можно рассматривать данную величину в качестве количественной характеристики способности тела к провождению тепла. Удельной теплопроводностью называют количество тепла, которое может проходить через материал, имеющий толщину 1м, площадь 1 м²/сек.
Долгое время считали, что существует взаимосвязь между передачей тепловой энергии и перетеканием от тела к телу теплорода. Но после проведения многочисленных экспериментов была выявлена зависимость подобных процессов от температуры.
В реальности при проведении математических расчетов, касающихся определения количества теплоты, передаваемой разными способами, учитывают проводимость путем конвекции, а также проникающее излучение. Коэффициент теплопередачи связан со скоростью передвижения жидкости, характером движения, его природой, а также с физическими параметрами движущейся среды.
В качестве носителей лучистой энергии выступают электромагнитные колебания, имеющие разную длину волн. Излучать их могут любые тела, температура которых превышает нулевое значение.
Излучение является результатом процессов, происходящих внутри тела. При попадании его на другие тела наблюдается частичное ее поглощение и частичное поглощение телом.
Закон Планка определяет зависимость плотности поверхностного потока излучения черного тела от абсолютной температуры и длины волны.
Простейшие виды теплообмена, которые были рассмотрены выше, не существуют по отдельности, они взаимосвязаны друг с другом. Сочетание их является сложным теплообменом, который предполагает серьезное изучение и детальное рассмотрение.
В теплотехнических расчетах используют суммарный коэффициент передачи тепла, который представляет собой совокупность коэффициентов теплоотдачи соприкосновением, которое учитывает теплопроводность, конвекцию, излучение.
При правильном подходе и учете отдельных тепловых явлений можно с высокой достоверностью рассчитать количество теплоты, переданное телу.
5.6 Методы теплопередачи — теплопроводность, конвекция и излучение Введение — физика Дугласского колледжа 1207
Глава 5 Температура, кинетическая теория и законы газа
Сводка
- Обсудите различные методы теплопередачи.
Не менее интересны, чем эффекты теплопередачи в системе, методы, с помощью которых это происходит. Всякий раз, когда есть разница температур, происходит передача тепла. Теплоотдача может происходить быстро, например, через кастрюлю, или медленно, например, через стенки ящика для льда для пикника.Мы можем контролировать скорость теплопередачи, выбирая материалы (например, толстую шерстяную одежду на зиму), контролируя движение воздуха (например, используя уплотнители вокруг дверей) или выбирая цвет (например, белая крыша для отражения лета). Солнечный свет). Так много процессов связаны с теплопередачей, поэтому трудно представить себе ситуацию, когда теплопередача не происходит. Однако каждый процесс, связанный с передачей тепла, осуществляется всего тремя способами:
- Проводимость — это передача тепла через неподвижное вещество при физическом контакте.(Материя неподвижна в макроскопическом масштабе — мы знаем, что существует тепловое движение атомов и молекул при любой температуре выше абсолютного нуля.) Тепло, передаваемое между электрической горелкой плиты и дном сковороды, передается за счет теплопроводности.
- Конвекция — это передача тепла за счет макроскопического движения жидкости. Этот тип переноса имеет место, например, в топке с принудительной подачей воздуха и в погодных системах.
- Передача тепла посредством излучения происходит, когда излучаются или поглощаются микроволны, инфракрасное излучение, видимый свет или другая форма электромагнитного излучения.Очевидный пример — потепление Земли Солнцем. Менее очевидный пример — тепловое излучение человеческого тела.
Мы рассмотрим эти методы более подробно в трех следующих модулях. Каждый метод имеет уникальные и интересные характеристики, но все три имеют одну общую черту: они передают тепло исключительно из-за разницы температур. Рис. 1.
Проверьте свое понимание
1: Назовите пример из повседневной жизни (отличный от текста) для каждого механизма теплопередачи.
- Тепло передается тремя различными способами: теплопроводностью, конвекцией и излучением.
Концептуальные вопросы
1: Каковы основные способы передачи тепла от горячего ядра Земли к ее поверхности? С поверхности Земли в космос?
2: Когда наши тела становятся слишком теплыми, они реагируют потоотделением и усилением кровообращения к поверхности, чтобы отводить тепловую энергию от ядра. Как это повлияет на человека, находящегося в гидромассажной ванне с температурой 40,0 o ° C?
3: На рис. 2 показан в разрезе термос (также известный как сосуд Дьюара), который представляет собой устройство, специально разработанное для замедления всех форм теплопередачи.Объясните функции различных частей, таких как вакуум, серебрение стен, тонкостенная длинная стеклянная горловина, резиновая опора, воздушный слой и стопор.
Рис. 2. Конструкция термоса разработана таким образом, чтобы препятствовать передаче тепла всеми способами.Глоссарий
- проводимость
- Передача тепла через неподвижное вещество при физическом контакте
- конвекция
- Передача тепла за счет макроскопического движения жидкости
- излучение
- Передача тепла, возникающая при испускании или поглощении микроволн, инфракрасного излучения, видимого света или другого электромагнитного излучения
Решения
Проверьте свое понимание
1: Электропроводность: тепло передается вашим рукам, когда вы держите чашку горячего кофе.
Конвекция: теплопередача, когда бариста «пропаривает» холодное молоко, чтобы сделать горячее какао .
Радиация: разогрев чашки холодного кофе в микроволновой печи.
Как передается тепло? Электропроводность — Конвекция — Излучение
Что такое тепло?
Вся материя состоит из молекул и атомов. Эти атомы всегда находятся в разных типах движения (поступательное, вращательное, колебательное).Движение атомов и молекул создает тепло или тепловую энергию. Вся материя обладает этой тепловой энергией. Чем больше движения имеют атомы или молекулы, тем больше у них тепла или тепловой энергии.
Это анимация, сделанная из короткого молекулярного динамического моделирование воды. Зеленые линии представляют собой водородные связи между кислородом и водород. Обратите внимание на плотную структуру воды
Водородные связи намного слабее ковалентных связей. Однако при большом количестве водорода облигации действуют в унисон, они оказывают сильное влияние.В этом случае в воде, показанной здесь.
Жидкая вода имеет частично заказанный структура, в которой постоянно образуются и разрушаются водородные связи. Из-за короткой шкалы времени (порядка нескольких пикосекунд) мало связей
Что такое температура?
Из видео выше, на котором показано движение атомов и молекул, видно, что некоторые движутся быстрее, чем другие. Температура — это среднее значение энергии для всех атомов и молекул в данной системе.Температура не зависит от количества вещества в системе. Это просто среднее значение энергии в системе.
Как передается тепло?
Тепло может перемещаться из одного места в другое тремя способами: проводимостью, конвекцией и излучением. И теплопроводность, и конвекция требуют вещества для передачи тепла.
Если существует разница температур между двумя системами, тепло всегда найдет способ перейти от более высокой системы к более низкой.
ПРОВОДИМОСТЬ — —
Проводимость — это передача тепла между веществами, находящимися в непосредственном контакте друг с другом. Чем лучше проводник, тем быстрее будет передаваться тепло. Металл хорошо проводит тепло. Проводимость возникает, когда вещество нагревается, частицы получают больше энергии и больше вибрируют. Затем эти молекулы сталкиваются с соседними частицами и передают им часть своей энергии.Затем это продолжается и передает энергию от горячего конца к более холодному концу вещества.
КОНВЕКЦИЯ —
Тепловая энергия передается из жарких мест в холодные посредством конвекции. Конвекция возникает, когда более теплые области жидкости или газа поднимаются к более холодным областям жидкости или газа. Более холодная жидкость или газ тогда заменяют более теплые области, которые поднялись выше. Это приводит к непрерывной схеме циркуляции.Кипящая вода в кастрюле — хороший пример таких конвекционных потоков. Еще один хороший пример конвекции — это атмосфера. Поверхность земли нагревается солнцем, теплый воздух поднимается вверх, а прохладный входит внутрь.
ИЗЛУЧЕНИЕ- —
Излучение — это метод передачи тепла, который не зависит от какого-либо контакта между источником тепла и нагретым объектом, как в случае с теплопроводностью и конвекцией. Тепло может передаваться через пустое пространство с помощью теплового излучения, которое часто называют инфракрасным излучением.Это разновидность электромагнитного излучения. В процессе излучения не происходит обмена масс и среды. Примеры излучения — это тепло солнца или тепло, выделяемое нитью лампочки.
ВЫБОР ИСТОЧНИКОВ И ЧИТАТЕЛЕЙ —
Тепло и температура от Cool Cosmo — NASA
Вот хороший апплет для демонстрации движения молекул — вы можете контролировать температуру и видеть в этом апплете, как меняются движения молекул.
Температура, важная для кулинарии и кулинарных навыков
greenTEG | 3 типа теплопередачи
Три типа теплопередачи
Тепло передается через твердый материал (проводимость), жидкости и газы (конвекция) и электромагнитные волны (излучение). Тепло обычно передается в сочетании этих трех типов и редко возникает само по себе. Например, на тепловую среду здания влияют потоки тепла через землю (теплопроводность) и оболочку здания (в основном конвекция и излучение).
Конвекция — это тепловой поток через жидкости и газы. Датчики теплового потока gSKIN® могут измерять конвективный тепловой поток (см. рисунок слева). Примеры конвективного теплового потока:
В ветреную погоду становится намного холоднее.
Ощущение намного холоднее в воде 25 ° C, чем на воздухе 25 ° C.
Принцип чувствительности в датчиках массового расхода на основе теплового потока. Узнать больше
Проводимость — это тепловой поток через твердые материалы.Датчики теплового потока gSKIN® могут измерять теплопроводный тепловой поток (см. рисунок слева). Примеры кондуктивного теплового потока:
Прикосновение к чашке горячего кофе
Термические воздействия в точных приборах. Узнать больше
Измерение тепловыделения химических реакторов. Узнать больше
Излучение Излучение — это тепловой поток через электромагнитные волны. Датчики теплового потока gSKIN® могут измерять радиационный тепловой поток (см. рисунок слева).Примеры лучистого теплового потока:
Ощущение жара, когда стоишь рядом с огнем.
Измерение солнечной энергии. Узнать больше
Принципы нагрева и охлаждения
Понимание того, как тепло передается с улицы в ваш дом и от вашего дома к вашему телу, важно для понимания проблемы поддержания прохлады в вашем доме. Понимание процессов, которые помогают сохранять ваше тело прохладным, важно для понимания стратегий охлаждения вашего дома.
Принципы теплопередачи
Тепло передается к объектам, таким как вы и ваш дом, и от них посредством трех процессов: теплопроводности, излучения и конвекции.
Проводимость — это тепло, проходящее через твердый материал. В жаркие дни тепло попадает в ваш дом через крышу, стены и окна. Теплоотражающие крыши, изоляция и энергоэффективные окна помогут снизить теплопроводность.
Излучение — это тепло, распространяющееся в виде видимого и невидимого света.Солнечный свет — очевидный источник тепла для дома. Кроме того, низковолновое невидимое инфракрасное излучение может переносить тепло непосредственно от теплых предметов к более холодным. Благодаря инфракрасному излучению вы можете почувствовать тепло горячего элемента конфорки на плите даже через всю комнату. Старые окна позволят инфракрасному излучению, исходящему от теплых предметов снаружи, проникать в ваш дом; оттенки могут помочь заблокировать это излучение. Новые окна имеют низкоэмиссионные покрытия, которые блокируют инфракрасное излучение. Инфракрасное излучение также будет переносить тепло от стен и потолка прямо к вашему телу.
Конвекция — еще одно средство для достижения тепла от ваших стен и потолка. Горячий воздух естественным образом поднимается вверх, унося тепло от стен и заставляя его циркулировать по всему дому. Когда горячий воздух проходит мимо вашей кожи (и вы вдыхаете его), он согревает вас.
Охлаждение тела
Ваше тело может охладиться посредством трех процессов: конвекции, излучения и потоотделения. Вентиляция усиливает все эти процессы. Вы также можете охладить свое тело с помощью теплопроводности — например, некоторые автокресла теперь оснащены охлаждающими элементами, — но это обычно нецелесообразно для использования в вашем доме.
Конвекция возникает, когда тепло уносится от вашего тела через движущийся воздух. Если окружающий воздух холоднее вашей кожи, воздух поглотит ваше тепло и поднимется. По мере того, как нагретый воздух поднимается вокруг вас, более прохладный воздух движется, чтобы занять его место и поглотить больше вашего тепла. Чем быстрее движется воздух, тем прохладнее вы чувствуете.
Излучение возникает, когда тепло распространяется через пространство между вами и предметами в вашем доме. Если предметы теплее, чем вы, тепло пойдет к вам.Удаление тепла через вентиляцию снижает температуру потолка, стен и мебели. Чем прохладнее ваше окружение, тем больше тепла вы будете излучать на предметы, а не наоборот.
Пот может быть неудобным, и многие люди предпочли бы оставаться спокойным без него. Однако во время жаркой погоды и физических упражнений пот — это мощный охлаждающий механизм организма. Когда влага покидает поры кожи, она переносит с собой много тепла, охлаждая ваше тело.Если ветерок (вентиляция) проходит по вашей коже, эта влага испарится быстрее, и вам будет еще прохладнее.
UCAR Center for Science Education
Энергия передается между поверхностью Земли и атмосферой различными способами, включая излучение, проводимость и конвекцию.
Кредит: NOAA NWS
Проводимость — это один из трех основных способов перемещения тепловой энергии с места на место. Два других способа движения тепла — это излучение и конвекция .Проводимость — это процесс, при котором тепловая энергия передается через столкновения между соседними атомами или молекулами. Проводимость легче происходит в твердых телах и жидкостях, где частицы расположены ближе друг к другу, чем в газах, где частицы находятся дальше друг от друга. Скорость передачи энергии за счет проводимости выше, когда существует большая разница температур между контактирующими веществами.
Представьте себе сковороду, установленную на открытой походной плите. Тепло огня заставляет молекулы в кастрюле вибрировать быстрее, делая ее горячее.Эти колеблющиеся молекулы сталкиваются со своими соседними молекулами, заставляя их вибрировать быстрее. Когда эти молекулы сталкиваются, тепловая энергия передается через проводимость остальной части сковороды. Если вы когда-либо прикасались к металлической ручке горячей сковороды без прихватки, вы не понаслышке знакомы с теплопроводностью!
Некоторые твердые тела, например металлы, являются хорошими проводниками тепла. Неудивительно, что у многих кастрюль и сковородок есть изолированные ручки. Воздух (смесь газов) и вода плохо проводят тепловую энергию.Их называют изоляторами.
Проводимость в атмосфере
Проводимость, излучение и конвекция играют роль в перемещении тепла между поверхностью Земли и атмосферой. Поскольку воздух — плохой проводник, большая часть передачи энергии за счет проводимости происходит непосредственно у поверхности Земли. Проводимость напрямую влияет на температуру воздуха всего на несколько сантиметров в атмосферу.
Днем солнечный свет нагревает землю, которая, в свою очередь, нагревает воздух прямо над ней за счет теплопроводности.Ночью земля охлаждается, и тепло перетекает из более теплого воздуха прямо над более прохладной землей посредством теплопроводности.
В ясные солнечные дни при слабом ветре или его отсутствии температура воздуха может быть намного выше прямо у земли, что совсем немного над ней. Хотя солнечный свет нагревает поверхность, поток тепла с поверхности в воздух наверху ограничен плохой проводимостью воздуха. Серия термометров, установленных на разной высоте над землей, показала бы, что температура воздуха быстро падает с высотой.
Методы теплопередачи | Безграничная физика
Проводимость — это передача тепла посредством физического контакта.
Цели обучения
Оценить, почему определенные характеристики необходимы для эффективного проведения
Основные выводы
ОСНОВНЫЕ МОМЕНТЫ
- В микроскопическом масштабе проводимость возникает, когда быстро движущиеся или колеблющиеся атомы и молекулы взаимодействуют с соседними частицами, передавая часть своей кинетической энергии.
- Электропроводность — это наиболее важная форма теплопередачи внутри твердого объекта или между твердыми телами, находящимися в тепловом контакте.
- Проводимость наиболее важна в твердых телах и меньше в жидкостях и газах из-за наличия пространства между молекулами.
- Скорость теплопередачи за счет теплопроводности зависит от разницы температур, размера области контакта, толщины материала и тепловых свойств материала (материалов) в контакте.
ОСНОВНЫЕ УСЛОВИЯ
- теплопроводность : мера способности материала проводить тепло
Проводимость
Проводимость — это передача тепла через неподвижное вещество при физическом контакте.(Материя неподвижна в макроскопическом масштабе — мы знаем, что существует тепловое движение атомов и молекул при любой температуре выше абсолютного нуля.) Тепло, передаваемое от электрической плиты на дно кастрюли, является примером теплопроводности.
Некоторые материалы проводят тепловую энергию быстрее, чем другие. Например, температура подушки в вашей комнате может быть такой же, как у металлической дверной ручки, но дверная ручка на ощупь холоднее. В целом, хорошие проводники электричества (металлы, такие как медь, алюминий, золото и серебро) также являются хорошими проводниками тепла, тогда как изоляторы электричества (дерево, пластик и резина) являются плохими проводниками тепла.
Описание проводимости под микроскопом
В микроскопическом масштабе проводимость возникает, когда быстро движущиеся или колеблющиеся атомы и молекулы взаимодействуют с соседними частицами, передавая часть своей кинетической энергии. Тепло передается за счет теплопроводности, когда соседние атомы колеблются друг относительно друга или когда электроны перемещаются от одного атома к другому. Электропроводность является наиболее важным средством передачи тепла внутри твердого тела или между твердыми объектами, находящимися в тепловом контакте. Проводимость выше в твердых телах, потому что сеть относительно близких фиксированных пространственных отношений между атомами помогает передавать энергию между ними посредством вибрации.
Жидкости и газы обладают меньшей проводимостью, чем твердые тела. Это связано с большим расстоянием между атомами в жидкости или (особенно) в газе: меньшее количество столкновений между атомами означает меньшую проводимость.
Микроскопическая иллюстрация проводимости : Молекулы в двух телах при разных температурах имеют разные средние кинетические энергии. Столкновения, происходящие на контактной поверхности, имеют тенденцию передавать энергию из высокотемпературных областей в низкотемпературные области. На этом рисунке молекула в области более низких температур (правая сторона) имеет низкую энергию перед столкновением, но ее энергия увеличивается после столкновения с контактной поверхностью.Напротив, молекула в области более высоких температур (слева) имеет высокую энергию до столкновения, но ее энергия уменьшается после столкновения с контактной поверхностью.
(Средняя) кинетическая энергия молекулы в горячем теле выше, чем в более холодном теле. Если две молекулы сталкиваются, происходит передача энергии от горячей молекулы к холодной (см. Рисунок выше). Кумулятивный эффект от всех столкновений приводит к чистому потоку тепла от горячего тела к более холодному телу. Таким образом, тепловой поток зависит от разницы температур [латекс] \ text {T} = \ text {T} _ \ text {hot} — \ text {T} _ \ text {cold} [/ latex].Таким образом, вы получите более сильный ожог от кипятка, чем от горячей воды из-под крана. И наоборот, если температуры одинаковы, чистая скорость теплопередачи падает до нуля и достигается равновесие. Благодаря тому, что количество столкновений увеличивается с увеличением площади, теплопроводность зависит от площади поперечного сечения. Если прикоснуться ладонью к холодной стене, рука остынет быстрее, чем при прикосновении к ней кончиком пальца.
Факторы, влияющие на скорость теплопередачи
Помимо температуры и площади поперечного сечения, еще одним фактором, влияющим на проводимость, является толщина материала, через который передается тепло.Передача тепла с левой стороны на правую осуществляется серией столкновений молекул. Чем толще материал, тем больше времени требуется для передачи того же количества тепла. Если ночью вам станет холодно, вы можете взять более толстое одеяло, чтобы согреться.
Влияние толщины на теплопроводность : Теплопроводность происходит через любой материал, представленный здесь прямоугольной полосой. Температура материала: [латекс] \ text {T} _2 [/ latex] слева и [латекс] \ text {T} _1 [/ latex] справа, где [latex] \ text {T} _2 [/ latex] больше, чем [latex] \ text {T} _1 [/ latex].Скорость теплопередачи прямо пропорциональна площади поверхности [латекс] \ text {A} [/ latex], разности температур [латекс] \ text {T} _2− \ text {T} _1 [/ latex] , и проводимость вещества [латекс] \ text {k} [/ latex]. Скорость теплопередачи обратно пропорциональна толщине [латекса] \ text {d} [/ latex].
Наконец, скорость теплопередачи зависит от свойств материала, описываемых коэффициентом теплопроводности. Все четыре фактора включены в простое уравнение, выведенное из экспериментов и подтвержденное экспериментами.Скорость кондуктивной теплопередачи через пластину материала, такую как та, что на рисунке выше, определяется как [latex] \ frac {\ text {Q}} {\ text {t}} = \ frac {\ text {kA } (\ text {T} _2− \ text {T} _1)} {\ text {d}} [/ latex] где [latex] \ text {Q} / \ text {t} [/ latex] — это скорость теплопередачи в Джоулях в секунду (Вт), [латекс] \ text {k} [/ latex] — теплопроводность материала, [латекс] \ text {A} [/ latex] и [латекс] \ text { d} [/ latex] — это его площадь поверхности и толщина, а [latex] \ left (\ text {T} _2− \ text {T} _1 \ right) [/ latex] — это разница температур на плите.
Конвекция — это передача тепла за счет макроскопического движения жидкости, например двигателя автомобиля, охлаждаемого водой в системе охлаждения.
Цели обучения
Проиллюстрируйте механизмы конвекции с фазовым переходом
Основные выводы
ОСНОВНЫЕ МОМЕНТЫ
- Конвекция вызывается крупномасштабным потоком вещества в жидкостях. Твердые тела не могут переносить тепло за счет конвекции.
- Естественная конвекция вызывается выталкивающими силами: горячий воздух поднимается вверх, потому что плотность уменьшается с увеличением температуры.Этот принцип одинаково применим к любой жидкости.
- Конвекция может передавать тепло намного эффективнее, чем теплопроводность. Воздух — плохой проводник и хороший изолятор, если пространство достаточно мало для предотвращения конвекции.
- Конвекция часто сопровождает фазовые изменения, например, когда пот испаряется с вашего тела. Этот массовый поток во время конвекции позволяет людям охладиться, даже если температура окружающего воздуха превышает температуру тела.
ОСНОВНЫЕ УСЛОВИЯ
естественная конвекция : Способ переноса тепла.Жидкость, окружающая источник тепла, получает тепло, становится менее плотной и поднимается вверх. Окружающая, более холодная жидкость затем перемещается, чтобы заменить ее. Затем эта более холодная жидкость нагревается, и процесс продолжается, образуя конвекционный поток.
положительная обратная связь : контур обратной связи, в котором выходной сигнал системы усиливается с чистым положительным усилением каждый цикл.
Пример
Расчет теплопередачи конвекцией: конвекция воздуха через стены дома.
Большинство домов не герметичны: воздух входит и выходит через двери и окна, через щели и щели, по проводке к выключателям и розеткам и так далее.Воздух в типичном доме полностью заменяется менее чем за час.
Предположим, что дом среднего размера имеет внутренние размеры 12,0 × 18,0 × 3,00 м в высоту, и что весь воздух заменяется за 30,0 мин. Рассчитайте теплопередачу в ваттах за единицу времени, необходимую для нагрева входящего холодного воздуха на 10,0 ºC, заменяя тем самым тепло, передаваемое только конвекцией.
Стратегия:
Тепло используется для повышения температуры воздуха так, чтобы [латекс] \ text {Q} = \ text {mc} \ Delta \ text {T} [/ latex].Скорость теплопередачи тогда равна [латекс] \ text {Q} / \ text {t} [/ latex], где [латекс] \ text {t} [/ latex] — это время оборота воздуха. Нам дано, что [латекс] \ Delta \ text {T} [/ latex] составляет 10,0ºC, но мы все равно должны найти значения массы воздуха и его удельной теплоемкости, прежде чем мы сможем вычислить [латекс] \ text {Q} [ /латекс]. Удельная теплоемкость воздуха — это средневзвешенное значение удельной теплоты азота и кислорода, которое составляет [латекс] \ text {c} = \ text {cp} \ cong1000 \ text {J} / \ text {kg} \ cdot \ текст {C} [/ latex] (обратите внимание, что для этого процесса необходимо использовать удельную теплоемкость при постоянном давлении).6 \ text {J}} {1800 \ text {s}} = 4,64 \ text {кВт} [/ latex].
Эта скорость передачи тепла равна мощности, потребляемой примерно сорока шестью лампочками мощностью 100 Вт.
Новые дома рассчитаны на время оборота 2 часа или более, а не 30 минут для дома в этом примере. Обычно используются погодоустойчивые уплотнения, уплотнения и улучшенные оконные уплотнения. В очень холодном (или жарком) климате иногда принимаются более крайние меры для достижения жесткого стандарта более 6 часов на один оборот воздуха.Еще более продолжительное время оборота вредно для здоровья, потому что требуется минимальное количество свежего воздуха для подачи кислорода для дыхания и разбавления бытовых загрязнителей. Термин, используемый для процесса проникновения наружного воздуха в дом из трещин вокруг окон, дверей и фундамента, называется «проникновение воздуха».
Конвекция
Конвекция (проиллюстрирована на) — это согласованное коллективное движение ансамблей молекул в жидкостях (например, жидкостях, газах). Конвекция массы не может происходить в твердых телах, поскольку в твердых телах не может происходить ни объемного течения, ни значительной диффузии.Вместо этого диффузия тепла в твердых телах называется теплопроводностью, которую мы только что рассмотрели.
Конвекционные камеры : Конвекционные камеры в гравитационном поле.
Конвекция вызывается крупномасштабным потоком вещества. В случае с Землей атмосферная циркуляция вызывается потоком горячего воздуха от тропиков к полюсам и потоком холодного воздуха от полюсов к тропикам. (Обратите внимание, что вращение Земли вызывает изменение направления воздушного потока в зависимости от широты.). Примером конвекции является автомобильный двигатель, охлаждаемый потоком воды в системе охлаждения, а водяной насос поддерживает поток холодной воды к поршням.
Хотя конвекция обычно сложнее, чем проводимость, мы можем описать конвекцию и выполнить несколько простых, реалистичных расчетов ее эффектов. Естественная конвекция вызывается выталкивающими силами: горячий воздух поднимается вверх, потому что плотность уменьшается с увеличением температуры. Этот принцип одинаково применим к любой жидкости.Например, таким образом поддерживается теплая кастрюля с водой на плите; океанские течения и крупномасштабная атмосферная циркуляция переносят энергию из одной части земного шара в другую.
Конвекция в горшке с водой : Конвекция играет важную роль в теплопередаче внутри этого резервуара с водой. Попадая внутрь, передача тепла другим частям кастрюли происходит в основном за счет конвекции. Более горячая вода расширяется, уменьшается по плотности и поднимается, передавая тепло другим областям воды, в то время как более холодная вода опускается на дно.Этот процесс повторяется.
Конвекция и изоляция
Хотя воздух может быстро передавать тепло за счет конвекции, он является плохим проводником и, следовательно, хорошим изолятором. Количество доступного пространства для воздушного потока определяет, действует ли воздух как изолятор или проводник. Например, расстояние между внутренней и внешней стенами дома составляет около 9 см (3,5 дюйма) — достаточно для эффективной работы конвекции. Дополнительная изоляция стен препятствует воздушному потоку, поэтому потери (или приток) тепла снижаются.Точно так же зазор между двумя стеклами окна с двойным остеклением составляет около 1 см, что предотвращает конвекцию и использует низкую проводимость воздуха для предотвращения больших потерь. Мех, волокна и стекловолокно также используют преимущества низкой проводимости воздуха, удерживая его в пространствах, слишком маленьких для поддержания конвекции. У животных мех и перья легкие и поэтому идеально подходят для их защиты.
Конвекция и фазовые изменения
Некоторые интересные явления происходят, когда конвекция сопровождается фазовым переходом.Это позволяет нам охладиться с помощью потоотделения, даже если температура окружающего воздуха превышает температуру тела. Тепло от кожи требуется для испарения пота с кожи, но без воздушного потока воздух становится насыщенным и испарение прекращается. Воздушный поток, вызванный конвекцией, заменяет насыщенный воздух сухим и, таким образом, испарение продолжается.
Другой важный пример сочетания фазового перехода и конвекции происходит при испарении воды из океана. При испарении воды тепло уходит из океана.Если водяной пар конденсируется в жидких каплях при образовании облаков, тепло выделяется в атмосфере (это выделение тепла является скрытой теплотой). Таким образом, происходит общий перенос тепла от океана в атмосферу. Этот процесс является движущей силой грозовых облаков — огромных кучевых облаков, поднимающихся на 20 км в стратосферу. Водяной пар, переносимый конвекцией, конденсируется, высвобождая огромное количество энергии, и эта энергия позволяет воздуху становиться более плавучим (теплее, чем его окружение) и подниматься.По мере того, как воздух продолжает подниматься, происходит все больше конденсации, которая, в свою очередь, поднимает облако еще выше. Такой механизм называется положительной обратной связью, поскольку процесс усиливается и ускоряется. Эти системы иногда вызывают сильные штормы с молниями и градом и представляют собой механизм, вызывающий ураганы.
Кучевые облака : Кучевые облака создаются водяным паром, поднимающимся из-за конвекции. Возникновение облаков происходит за счет механизма положительной обратной связи.
Радиация
Излучение — это передача тепла посредством электромагнитной энергии
Цели обучения
Объясните, как энергия электромагнитного излучения соответствует длине волны
.Основные выводы
ОСНОВНЫЕ МОМЕНТЫ
- Энергия электромагнитного излучения зависит от длины волны (цвета) и варьируется в широком диапазоне: меньшая длина волны (или более высокая частота) соответствует более высокой энергии.
- Все объекты излучают и поглощают электромагнитную энергию.Цвет объекта связан с его излучательной способностью или его эффективностью излучения энергии. Черный — самый эффективный, а белый — наименее эффективный ([латекс] \ text {e} = 1 [/ latex] и [latex] \ text {e} = 0 [/ latex], соответственно).
- Идеальный излучатель, часто называемый черным телом, имеет тот же цвет, что и идеальный поглотитель, и улавливает все падающее на него излучение. 4 [/ latex] где [латекс] \ сигма = 5.{4}} [/ latex] — это постоянная Стефана-Больцмана, [latex] \ text {A} [/ latex] — это площадь поверхности объекта, а [latex] \ text {T} [/ latex] — это его абсолютная температура в кельвинах.
- Чистая скорость теплопередачи зависит от температуры объекта и температуры его окружения. Чем больше разница, тем выше чистый тепловой поток.
- Температура объекта очень важна, потому что испускаемое излучение пропорционально этой величине в четвертой степени.
ОСНОВНЫЕ УСЛОВИЯ
- черное тело : Теоретическое тело, аппроксимированное дырой в полой черной сфере, которое поглощает все падающее электромагнитное излучение и не отражает его; он имеет характерный спектр излучения.
- излучательная способность : способность поверхности излучать энергию, обычно измеряемая на определенной длине волны.
Радиация
Вы можете почувствовать теплоотдачу от огня или солнца. Тем не менее, пространство между Землей и Солнцем в значительной степени пусто, без какой-либо возможности теплопередачи за счет конвекции или теплопроводности.Точно так же вы можете сказать, что духовка горячая, не касаясь ее и не заглядывая внутрь — она просто согревает вас, когда вы проходите мимо.
В этих примерах тепло передается за счет излучения. Горячее тело излучает электромагнитные волны, которые поглощаются нашей кожей, и для их распространения не требуется никакой среды. Мы используем разные названия для электромагнитных волн разной длины: радиоволны, микроволны, инфракрасное излучение, видимый свет, ультрафиолетовое излучение, рентгеновские лучи и гамма-лучи.
Излучение от пожара : Большая часть тепла от этого огня передается наблюдателям через инфракрасное излучение.Видимый свет, хотя и впечатляющий, передает относительно мало тепловой энергии. Конвекция отводит энергию от наблюдателей по мере подъема горячего воздуха, в то время как здесь проводимость пренебрежимо мала. Кожа очень чувствительна к инфракрасному излучению, поэтому вы можете почувствовать присутствие огня, даже не глядя на него.
Энергия электромагнитного излучения зависит от его длины волны (цвета) и изменяется в широком диапазоне; меньшая длина волны (или более высокая частота) соответствует более высокой энергии.Мы можем записать это как:
[латекс] \ text {E} = \ text {hf} = \ frac {\ text {hc}} {\ lambda} [/ latex]
где [latex] \ text {E} [/ latex] — энергия, [latex] \ text {f} [/ latex] — частота, [latex] \ lambda [/ latex] — длина волны, а [latex] ] \ text {h} [/ latex] — это константа.
Поскольку при более высоких температурах излучается больше тепла, изменение температуры сопровождается изменением цвета. Например, электрический элемент в печи светится от красного до оранжевого цвета, а высокотемпературная сталь в доменной печи светится от желтого до белого.Ощущаемое вами излучение в основном инфракрасное, которое еще ниже по температуре.
Излучаемая энергия зависит от ее интенсивности, которая представлена высотой распределения.
Спектр излучения: (а) График спектров электромагнитных волн, испускаемых идеальным излучателем при трех различных температурах. Интенсивность или скорость излучения излучения резко возрастает с температурой, и спектр смещается в сторону видимой и ультрафиолетовой частей спектра.Заштрихованная часть обозначает видимую часть спектра. Очевидно, что сдвиг в сторону ультрафиолета с температурой приводит к смещению видимого внешнего вида с красного на белый и на синий при повышении температуры. (b) Обратите внимание на изменения цвета, соответствующие изменениям температуры пламени.
Теплообмен
Все объекты поглощают и излучают электромагнитное излучение. Скорость передачи тепла излучением во многом определяется цветом объекта. Черный наиболее эффективен, а белый — наименее.Например, люди, живущие в жарком климате, обычно избегают ношения черной одежды. Точно так же черный асфальт на стоянке будет жарче, чем прилегающий серый тротуар в летний день, потому что черный поглощает лучше, чем серый. Верно и обратное — черный цвет излучает лучше, чем серый. Таким образом, ясной летней ночью асфальт будет холоднее серого тротуара, потому что черный цвет излучает энергию быстрее, чем серый.
Идеальный излучатель, часто называемый черным телом, имеет тот же цвет, что и идеальный поглотитель, и улавливает все падающее на него излучение.Напротив, белый цвет — плохой поглотитель и плохой радиатор. Белый объект, как зеркало, отражает все излучения. (Идеальная, полированная белая поверхность выглядит как зеркало, а растрескавшееся зеркало выглядит белым.)
Существует умная связь между температурой идеального излучателя и длиной волны, на которой он излучает больше всего излучения. Он называется законом смещения Вина и определяется по формуле:
.[латекс] \ lambda_max \ text {T} = \ text {b} [/ latex]
где [латекс] \ text {b} [/ latex] — константа, равная [латексу] 2.{-3} \ text {m} \ cdot \ text {K} [/ latex].
Серые объекты обладают одинаковой способностью поглощать все части электромагнитного спектра. Цветные объекты ведут себя аналогичным, но более сложным образом, что придает им определенный цвет в видимом диапазоне и может сделать их особенными в других диапазонах невидимого спектра. Возьмем, к примеру, сильное поглощение кожей инфракрасного излучения, которое позволяет нам быть очень чувствительными к нему.
Хорошие и плохие радиаторы : черный объект — хороший поглотитель и хороший радиатор, а белый (или серебристый) предмет — плохой поглотитель и плохой радиатор.{4}} [/ latex] — постоянная Стефана-Больцмана, A — площадь поверхности объекта, а T — его абсолютная температура в градусах Кельвина. Символ e обозначает коэффициент излучения объекта, который является мерой того, насколько хорошо он излучает. Идеальный черный (или черное тело) излучатель имеет [латекс] \ text {e} = 1 [/ latex], тогда как идеальный отражатель имеет [латекс] \ text {e} = 0 [/ latex]. Реальные объекты находятся между этими двумя значениями. Например, нити вольфрамовых лампочек имеют [латекс] \ text {e} [/ latex] около 0,5, а углеродная сажа (материал, используемый в тонере для принтеров) имеет (самый известный) коэффициент излучения около 0.99.
Уровень излучения прямо пропорционален четвертой степени абсолютной температуры — чрезвычайно сильная температурная зависимость. Кроме того, излучаемое тепло пропорционально площади поверхности объекта. Если разнести угли костра, произойдет заметное увеличение радиации из-за увеличения площади излучающей поверхности.
Чистая скорость передачи тепла
Чистая скорость передачи тепла излучением (поглощение минус излучение) зависит как от температуры объекта, так и от температуры его окружения.4) [/ латекс]
, где e — коэффициент излучения только объекта. Другими словами, не имеет значения, белое, серое или черное окружение; баланс входящего и исходящего излучения зависит от того, насколько хорошо он излучает и поглощает излучение. Когда [латекс] \ text {T} _2> \ text {T} _1 [/ latex], количество [latex] \ text {Q} _ \ text {net} / \ text {t} [/ latex] положительно. ; то есть чистая теплопередача идет от более горячих объектов к более холодным объектам.
4 типа механизмов теплопередачи для охлаждения электрических шкафов
Охлаждение электрического шкафа включает в себя процессы передачи тепла изнутри шкафа и отвода его в окружающий воздух.Существуют различные механизмы теплопередачи, включая конвекцию, теплопроводность, тепловое излучение и испарительное охлаждение. Механизмы теплопередачиОхлаждение корпуса включает комбинацию механизмов теплопередачи. Основные механизмы, используемые для охлаждения электрических шкафов, следующие:
- Проводимость: Это передача тепла через твердое тело. Например, тепло, генерируемое внутри корпуса, передается на внешнюю поверхность посредством теплопроводности.
- Конвекция: Конвекция — это передача тепла от поверхности с помощью жидкости, такой как воздух. Естественная конвекция возникает при нагревании воздуха: он расширяется, поднимается вверх и заменяется более холодным воздухом. Степень конвекции можно увеличить, используя вентилятор для увеличения потока воздуха.
- Излучение: Это процесс, при котором энергия излучается через воздух посредством электромагнитного излучения. Хотя он эффективен для источников высокой температуры, таких как солнце, он менее эффективен при температуре окружающей среды на Земле.
- Испарение: Скрытая теплота жидкости может использоваться для передачи тепла путем поглощения энергии, необходимой для испарения этой жидкости. Поглощенное тепло высвобождается, позволяя жидкости конденсироваться за пределами корпуса.
Эти формы теплопередачи используются для охлаждения электрических шкафов несколькими способами.
Пассивное охлаждениеПассивное охлаждение, основанное на естественной теплопроводности, конвекции и излучении, подходит для малонагруженных шкафов с относительно большой площадью поверхности и хорошей вентиляцией.Температура окружающего воздуха должна быть ниже температуры корпуса. Этот метод не подходит для термочувствительных компонентов при высоких температурах окружающей среды.
Принудительная вентиляцияЭффективность конвекции можно повысить за счет использования вентиляторов, которые увеличивают поток воздуха через шкаф. Холодный воздух втягивается в нижнюю часть шкафа, а горячий воздух выходит в верхнюю часть. Вентиляторы должны быть оснащены фильтрами, чтобы ограничить попадание грязи, которая может повредить компоненты.Чтобы электрические компоненты не сильно нагревались, температура окружающей среды должна быть значительно ниже максимальной желаемой температуры корпуса.
Технология тепловых трубТепловые трубки, впервые разработанные в 1960-х годах, представляют собой практически безэнергетический метод охлаждения корпуса. Тепловая трубка состоит из вакуумированной медной трубки, частично заполненной жидкостью, например спиртом или водой. Из-за низкого давления жидкость на дне трубы закипает, когда она поглощает тепло из воздуха внутри помещения.Пар поднимается к верху трубы, где он охлаждается воздухом за пределами камеры и конденсируется. Затем конденсированная жидкость возвращается на дно трубки, и цикл повторяется.
В теплообменниках воздух-воздух Thermal Edge используется эта новая технология для охлаждения герметичных электрических шкафов. Единственная энергия, необходимая маленьким вентиляторам, — это циркуляция воздуха вокруг горячих и холодных концов тепловой трубки.
Система кондиционирования воздуха в шкафуВ кондиционировании воздуха также используется испарение, но немного по-другому.Жидкий хладагент под давлением пропускается через расширительное устройство. Падение давления вызывает испарение жидкости в змеевике испарителя кондиционера и поглощение тепла, охлаждая воздух внутри помещения. Затем горячий газ сжимается и проходит через змеевик конденсатора, где газ сжижается, передавая свое тепло воздуху за пределами камеры. Комбинированный кондиционер представляет собой чрезвычайно эффективный метод охлаждения шкафа и будет эффективно работать, даже если температура окружающей среды намного выше, чем температура воздуха в шкафу.
Станьте первым комментатором