Матрица фотоаппарата — все самое главное и ничего лишнего
По сравнению с фотокамерами прошлых лет, у цифровых камер очень мало механических узлов. Их заменили электронные компоненты. Остался неизменным только принцип получения фотографии, который заключается в переносе видимого изображения на какой-либо физический носитель. У старых фотокамер это была светочувствительная плёнка, а у современных цифровых устройств – матрица фотоаппарата. Статья может быть полезна тем, кто интересуется фотографией не только, как искусством, но и хочет понять некоторые конструктивные особенности фотокамер и принципы получения изображения.
Формирование изображения в фотокамере
Матрица, фотодатчик, сенсор – это названия одного и того же устройства, входящего в конструкцию фотоаппарата и являющегося его основным элементом. По конструкции матрица это прямоугольная пластинка разных размеров из химически чистого кремния, на которой методом вакуумного напыления организовано большое количество n-p переходов. Эти переходы представляют собой светочувствительные фотодиоды или фототранзисторы. Таким образом, матрица это интегральная микросхема с несколькими миллионами светочувствительных элементов. Когда на фотодиод попадет свет, он преобразуется в электрический сигнал. В зависимости от объекта съёмки количество света может быть большим или меньшим. Электрические потенциалы с матрицы считываются построчно или поэлементно, затем обрабатываются процессором.
Типы матриц
- ПЗС;
- КМОП;
- Live-MOS;
- 3 CCD.
ПЗС матрица состоит из полупроводниковых фотодиодов, а считывание электрических потенциалов осуществляется по горизонтальным строкам. Полевые структуры КМОП намного экономичнее, но за счёт электронных преобразований при считывании, качество картинки несколько хуже, чем на матрице ПЗС. Live-MOS является усовершенствованным КМОП сенсором. Его отличают повышенная чувствительность и быстрая передача сигналов. В матрице используется малошумящий усилитель и низковольтное питание. Это разработка Панасоник, которая применяется в фотоаппаратах этой компании, а так же в камерах Leica и Olympus. 3CCD или трёхматричный сенсор обеспечивает высококачественную цветопередачу с малым уровнем шумов. Разделение цветов осуществляется дихроидной призмой маленького размера с записью каждого из основных цветов на отдельную матрицу. К недостаткам системы 3CCD относятся большие размеры устройства и высокая цена камеры.
Важные характеристики матриц
Полупроводниковая матрица цифрового фотоаппарата имеет ряд основных характеристик, от которых зависит качество изображения. Это следующие параметры:
- Размер
- Количество пикселей
- Чувствительность
- Динамический диапазон
- Соотношение сигнал/шум
К дополнительным характеристикам относится напряжение питания и энергопотребление. Они не влияют на картинку и в описании фотоаппарата обычно не указываются.
Кроп фактор
Это главный параметр полупроводниковой матрицы. От него, и в меньшей степени от количества пикселей, зависят важнейшие характеристики изображения, снятого камерой. Кроп фактор это цифра, показывающая, на сколько реальная матрица меньше полнокадрового стандарта. Full Frame – это размер матрицы 24 Х 36 мм. Такими сенсорами оснащаются самые дорогие и профессиональные фотоаппараты. Этот размер соответствует кадру на стандартной фотоплёнке. Для снижения стоимости фототехники, а так же для производства компактных и лёгких любительских фотокамер «мыльниц» применяются матрицы маленького размера.
Существует общепринятый ряд форматов светочувствительных матриц. За полнокадровыми матрицами следует размер 16 Х 24 мм, что соответствует кроп-фактору 1,5. Самыми маленькими сенсорами, применяемыми в недорогих фотоаппаратах, являются матрицы с размерами 4,5 Х 3,4 мм. Это кроп фактор 7,6. Они применяются в дешёвых моделях фотокамер, где высокое качество кадра не требуется.
Разрешение, мегапиксели
Количеством мегапикселей обычно хвастаются продавцы фотоаппаратов, когда предлагают товар начинающим фотолюбителям. К этому параметру следует относиться с осторожностью. Кадр цифрового фотоаппарата состоит из миниатюрных полупроводниковых элементов. Каждый пиксель это сверхминиатюрный фотодиод или фототранзистор. Теоретически получается, что чем больше пикселей, тем выше качество изображения, точнее проработка мелких деталей или разрешение. На практике большое количество пикселей повышает качество изображения только на матрицах большого размера.
Если размер кристалла небольшой, а изготовитель фотоаппаратов сумел разместить на нём большое количество светочувствительных элементов, то качество изображения будет невысоким. Очень важным для матрицы является не только размер отдельных фотоэлементов, но и расстояние между ними. Маленькие расстояния приводят к перегреву матрицы и возрастанию цифрового шума, который характеризуется цветными точками по всему изображению. Кроме того, при сильном диафрагмировании объектива фотокамеры, за счёт дифракции, вокруг элементов изображения будет появляться цветовая окантовка. Поэтому кадр, снятый на фотоаппарате с матрицей 5,4 Х 4,0 мм и 16 Мп, будет гораздо хуже снимка, полученного на камере с размерами матрицы 8,8 Х 6,6 мм и 10 Мп. Считается, что, в камерах, превышение числа мегапикселей свыше 25 будет излишним. Отчасти это связано с разрешением принтеров для фотопечати, когда самые продвинутые модели печатают фотографии с разрешением 9 600 Х 2 400 точек, что соответствует 23,4 мегапикселей.
Светочувствительность
Этот параметр в цифровых фотокамерах является относительной величиной. Кремниевая пластина со светочувствительными элементами имеет постоянную чувствительность. Всё дело в уровнях сигнала, которые поступают с фотодиодов для дальнейшего преобразования. Если на сенсор фотоаппарата поступает мало света, то электрический сигнал с него будет слабым и фотография будет тёмной. Для того чтобы сделать изображение более светлым слабый сигнал можно усилить. Изменяемый коэффициент усиления и является чувствительностью фотоаппарата. Для удобства фотографов чувствительность матрицы выражается в тех же единицах, что и у западного стандарта на фотоматериалы ASA. Соотношение чувствительности ISO и отечественных фотоплёнок выглядит следующим образом:
- 50 – 45;
- 64 – 65;
- 100 – 90;
- 160 – 130;
- 320 – 250.
В левой графе величина чувствительности фотоаппарата, а в правой чувствительность фотоплёнки по ГОСТ.
Отношение сигнал/шум
Мелкие цветные точки на изображении возникают от разных причин. Прежде всего, сама матрица даже при отсутствии засветки будет выдавать слабый электрический потенциал. Это и есть шум. Чтобы он не влиял на изображение, уровень полезного сигнала должен намного превышать уровень шума. Шумовые характеристики матрицы повышаются с уменьшением размера пикселя и расстояния между отдельными точками. Поэтому самой некачественной картинкой будет та, которая получена на маленьком сенсоре с большим количеством мегапикселей. Шум фотокамеры заметно возрастает при увеличении коэффициента усиления или чувствительности. Поэтому, если это возможно, рекомендуется снимать на минимальной чувствительности. Отрицательно влияет на качество изображения нагрев матрицы фотоаппарата. Это происходит, когда она постоянно работает, выводя изображение на дисплей. Профессионалы стараются работать с оптическим видоискателем фотокамеры. В этом случае питание на матрицу подаётся только на очень короткое время, и она не успевает нагреться.
Динамический диапазон
Этот параметр определяется промежутком между минимальным и максимальным значением экспозиции, которые отчётливо видны на снимке. Если у фотоаппарата указан динамический диапазон 8 ступеней или EV, то на снимке будут видны объекты, отличающиеся по яркости в 256 (28) раз. Все предметы, яркость которых выше, получатся совершенно белыми. Нижний порог определяется уровнем шумов самой матрицы, а верхний максимальным электрическим зарядом фотодиода.
Какой фотоаппарат выбрать
При желании снимать всё подряд, не задумываясь о высоком качестве снимка, можно приобрести любой фотоаппарат типа компакт или «мыльница». Отсутствие ручных режимов, большое количество сюжетных программ и фокусировка на лица, делает такой фотоаппарат простым в обращении и удобным для бытового использования. Для получения качественных снимков подойдёт недорогой фотоаппарат с матрицей большего размера и с возможностью ручной установки некоторых параметров съёмки. Ещё больше возможностей предоставляет пользователю беззеркальная камера «суперзум». Обладая небольшими размерами, она позволяет снимать интересные сюжеты на большом удалении от объекта съёмки, поэтому подойдёт для туристов и путешественников. Самые качественные снимки получаются с помощью зеркальной камеры, хотя её применение ограничивается большими размерами и весом. Если Вы хотите узнать все нюансы выбора фотокамеры, наши эксперты подготовили подробные инструкции в статье как выбрать фотоаппарат.
Итоги
При выборе фотоаппарата следует сначала ориентироваться на размер матрицы. Не стоит гнаться за большим количеством точек на изображении. 12-16 Мп более чем достаточно для получения и печати фотографий хорошего качества. Цифровой зум для камеры не слишком важен, так как он только позволяет растянуть центральную часть изображения на весь экран с ухудшением качества. Многие параметры не указываются в спецификации на фотоаппарат, поэтому перед выбором модели неплохо почитать отзывы фотолюбителей на специальных сайтах.
my-photocamera.ru
Какой размер матрицы фотоаппарата лучше: таблица размеров
Рад вновь приветствовать вас, дорогой читатель. С вами на связи, Тимур Мустаев. Ранее на нашем блоге уже обозревались светочувствительные элементы фотоаппаратов, их свойства, кроп-фактор, количество мегапикселей и прочие параметры. Сегодня настал тот день, когда я вам расскажу более подробно, какой размер матрицы фотоаппарата лучше и почему.
В чём подвох?
Итак, если вы заинтересовались этой темой, значит, вы заинтересованы в улучшении качества своих фотографий. Вы, наверняка, уже слышали байку от рекламщиков, что на качество фотографии влияет только лишь количество мегапикселей. На самом деле, это не совсем так. Почему? Давайте разбираться.
Практически в каждом магазине фотооборудования есть, как минимум, один постер, кричащий о новой камере со встроенной матрицей супер высокого разрешения. Естественно, стоить она будет много больше, чем «скромные» конкуренты, поэтому рекламировать их гораздо выгоднее.
Размер матрицы
Если говорить о габаритах датчика, то здесь любого читателя ожидает огромный диапазон вариантов. От миллиметровых сенсоров смартфонов до огромных светочувствительных элементов кинокамер. Я постараюсь затронуть лишь фотокамеры, насколько это будет возможно.
Итак, существует специальная классификация размеров матриц фотоаппаратов. Таблица, приведённая ниже, показывает более наглядно различия в их длине и ширине.
Как мы здесь видим, начинается с 1/3-½ дюйма. Как правило, такие сенсоры устанавливаются в наиболее дешёвых вариантах любительских мыльниц. Соотношение сторон таких матриц составляет 4:3. Вообще, этого достаточно для формирования семейного фотоальбома, но ведь мы не для этого начали так подробно изучать фотографию, верно?
Камеры с соотношением 2/3, 4/3 дюйма имеют такое же соотношение сторон, однако, пикселям на них более «комфортно», что положительно сказывается на качестве, потому применяются такие элементы на более дорогих фотоаппаратах.
Остальные варианты представляют собой сенсоры, с соотношением сторон 3:2, а также составляют половину от полного кадра. Последний пункт таблицы – Full Frame. Он полностью соответствует своему названию и представляет собой золотой стандарт – 35-миллиметровый светочувствительный элемент. 35-мм сенсор, кстати говоря, соответствует размеру плёнки старых камер, о чём уже говорилось ранее, в одной из прошлых статей.
Каков итог?
Настал тот момент, когда нужно формулировать тезисы. Итак, первый из них – чем шире и выше матрица, тем дальше пиксели находятся друг от друга. Как результат, пиксели «чувствуют себя более комфортно» в таких условиях: они меньше подвергаются перегреву и, сами по себе, имеют большие габариты, за счёт чего каждый из них может захватить большее количество света.
Исходя из этого, делаем вывод, что две камеры с одинаковым количеством мегапикселей и разной величиной сенсора получат различный конечный снимок. Камера с большим датчиком получит фотографию более качественную.
Мегапиксели
Как бы реклама не заверяла, что их количество сильно влияет на качество фотографии, это не совсем так. Вообще, число фотодиодов определяет не столько качество, сколько количество занимаемого в памяти объёма светового отпечатка, который передаётся на процессор. Конечно, высокое разрешение – это хорошо, только если они расположены на матрице соответствующего размера. Иначе, элементы будут перегревать друг друга, из-за чего на фотографиях может образоваться шум.
Благодаря тому, что огромное количество фотографов начинает разбираться в этом вопросе, производители начали создавать пиксели большей величины, чем раньше. А какой от этого толк?
Всё просто: площадь пикселя обширнее, следовательно, он способен захватить большее количество света и передать его на процессор для обработки.
Как мы знаем, многие камеры имеют определённый диапазон регулировки разрешения конечной фотографии. Так вот, подавляющая часть зеркалок имеют показатель от 12 до 24 Мп, а профессиональные – 10-36 Мп, причём площади сенсоров отличаются в 2 и более раз.
В чём смысл всего этого? Можно выбрать среднее разрешение меж двух крайних значений. Это обеспечит быструю обработку снимка и задействует лишь часть пикселей, из-за чего увеличится расстояние между работающими элементами. Такой лайфхак позволит избавиться от лишних шумов.
В чём же итог? Всё просто: под каждый случай будет хороша определённая матрица, однако, сравнение конечных результатов покажет превосходство полнокадрового датчика. Причиной тому универсальность последнего.
Если у вас есть зеркальная фотокамера и вы хотите научиться ею пользоваться, чтобы получать красивые фотографии, предлагаю вашему вниманию «Цифровая зеркалка для новичка 2.0» или «Моя первая ЗЕРКАЛКА». Данный видео курс, просто находка для новичка. Ознакомившись с его содержимым, вы получите отличные знания о зеркалки. Помните, саморазвитие — это большой шаг в будущее своего успеха.
Цифровая зеркалка для новичка 2.0 — у вас NIKON? Этот курс для вас.
Моя первая ЗЕРКАЛКА — у вас CANON? Этот курс для вас.
Надеюсь, у меня получилось рассказать о матрицах в фотоаппаратах, какая лучше и почему стоит выбирать больший сенсор. Если статья была интересна, а также полезна для вас – расскажите о ней друзьям, подпишитесь на обновления блога, впереди нас ждёт масса полезных фотостатей.
Всех вам благ, Тимур Мустаев.
fotorika.ru
Физический размер матрицы и его влияние на качество снимков
Не все начинающие пользователи знают, что такое физический размер матрицы. Многие путают его с разрешением, но это разные вещи. При этом, физический размер матрицы — это один из важнейших параметров камеры, который влияет на качество снимков.
Прежде чем приступить к рассмотрению влияния размера матрицы на фотографии, рассмотрим сначала какие именно бывают матрицы.
Иногда бывает не просто узнать какая именно матрица стоит на том или ином фотоаппарате. Продавцы в магазинах зачастую просто не знают этого, а производители крайне редко указывают эту информацию. Почему? Этот загадка.
И всё же, что такое физический размер матрицы?
Как многие могли догадаться, физический размер матрицы — это ей длинна и ширина, измеряемые в миллиметрах.
Исторически сложилось так, что в спецификациях производители указывают физический размер матрицы в обратном количестве дюймов, а не в миллиметрах. Это выглядит следующим образом: 1 / 3.2 — это 3.4 * 4.5 мм.
Зачастую даже в дюймах размер матрицы в спецификациях не указывается, хотя тенденция начинает изменяться. В анонсах новых камер часто можно встретить эту информацию, но не факт, что её можно будет найти в инструкции к камере. В тех случаях, когда размер неизвестен, можно воспользоваться расчетом. Облегчит это занятие таблица со стандартными значениями:
В мм. |
В дюймах |
KF |
3.4 * 4.5 |
1 / 3.2 « |
7.6 |
4.0 * 5.4 |
1 / 2.7 « |
6.4 |
4,3 * 5,8 |
1 / 2,5″ |
6.0 |
5,3 * 7,2 |
1 / 1,8″ |
4.9 |
6,6 * 8,8 |
2 / 3″ |
4.0 |
15 * 23 |
APS-C |
1.6 |
Первая колонка содержит значения физического размера матрицы. Вторая колонка указывает соответствующий размер в дюймах. Третья колонка содержит информацию о том, насколько диагональ кадра 35мм больше диагонали матрицы.Чтобы произвести расчет, нужны будут два значения, которые всегда указываются в спецификациях к фотоаппаратам. Это эквивалентное фокусное расстояние и фокусное расстояние. В технической документации и на объективе вся нужная информация должна быть. Если фокусное расстояние и эквивалентное фокусное расстояние известны, вычисления легко провести путем деления второго на первое. Результатом расчета будет значение коэффициента KF.
Пример: имея F = 7 – 21мм, и Feq = 35 – 105мм, можно получить две формулы. Делить можно либо 35/7, либо 105/21. Результатом обеих действий будет KF = 5. По таблице находим самое близкое значение к расчетному и получаем интересующую нас информацию. В нашем случае это физический размер 1 / 1,8″ или 5,3 * 7,2мм.
Рассмотрим матрицы по типоразмерам:
- Самые маленькие матрицы — 1 / 3.2″. Используются они чаще всего в дешевых компактных фотоаппаратах. Их соотношение сторон составляет 4:3, а физический размер — 3.4 * 4.5 мм.
- Матрицы 1 / 2.7″ с соотношением сторон 4:3 и физическим размером 4.0 * 5.4 мм применяются также в недорогих компактах.
- Матрицы 1 / 2,5″ относятся к тому же сегменту камер, что и предыдущие две позиции. Они имеют соотношение сторон 4:3, а размер — 4,3 * 5,8мм.
- Матрицы размером 1 / 1,8″ с соотношением сторон 4:3 и геометрическим размером 5,3 * 7,2 мм применяются в более дорогих компактных камерах. Их можно встретить в устройствах среднего и выше среднего ценового диапазона.
- Размер матриц 2 / 3″ имеет соотношение сторон 4:3, а физический размер 6,6 * 8,8 мм. Часто они применяются в дорогих компактах с не сменной оптикой.
- Матрицы размером 4 / 3″ — физический размер 18 * 13,5 мм и соотношение сторон 4:3 применяются в дорогих камерах.
- DX, APS-C — это формат матриц с соотношением сторон 3:2 и размером около 24 * 18 мм. Эти матрицы применяются в полупрофессиональных и профессиональных зеркальных камерах. Широкое распространение они получили благодаря относительной дешевизне и хорошем качестве снимков.
- Полнокадровая матрица имеет размер 36 * 24 мм. Её соотношение сторон 3:2, а по размеру она соответствует 35 мм кадру. Такие матрицы дорого обходятся в производстве и применяются в профессиональной фототехнике.
- Среднеформатные матрицы имеют формат 60 * 45 мм с соотношением сторон 3:2. Такие матрицы сшиваются из нескольких более простых, что непременно сказывается на стоимости такого производства. Применяются исключительно в дорогих фотоаппаратах.
Разобравшись с основными размерами, стоит поговорить о том, на что же именно они влияют.
Прежде всего, размер матрицы влияет на габариты и вес фотокамеры. Размер оптической части напрямую зависит от размера матрицы, а отсюда можно делать соответствующие выводы.
Также размер матрицы является показателем цифрового шума, который будет передаваться на снимки.
Цифровой шум существенно портит фотографии, создавая впечатление наложенной на снимок маски из точек и царапин.
Шум может возникать по многим причинам. Это может быть дефект самой матрицы, проявляющийся в утечке тока, пробивающегося на соседние пиксели. Также появление шума может быть следствием нагрева матрицы.
На показатели шума влияют как физический размер матрицы, так и размеры пикселей. Чем размер матрицы больше, тем больше света на нее попадает. Соответственно полезной информации больше. Использование больших по размеру матриц позволяет получить более яркое изображение с естественными цветами.
При большом размере пикселей слой изоляции между ними тоже больше, а следовательно ток утечки уменьшается.
Для большего осознания понятия размера пикселя просто представьте две матрицы одинакового размера. На одной матрице 4000 пикселей (4Мп), а на второй 8000 пикселей (8Мп). Представьте теперь разницу в слое изоляции между каждым пикселем для первого и для второго случая.
Стоит заметить, что на матрицы маленького размера попадает мало света, а соответственно полезный сигнал не велик. Его нужно усиливать, а вместе с полезной информацией усиливаются и шумы.
Вывод!
Подводя итог, можно выделить тот факт, что на матрицу большого размера попадает большее количество света. Соответственно снимок будет ярче и четче. Увеличение размера матрицы увеличивает стоимость её производства, а, следовательно, фотоаппараты с матрицами большого физического размера будут стоить намного дороже своих компактных аналогов.
Copyright by TakeFoto.ru
www.takefoto.ru
Матрица фотоаппарата
Никого сейчас не удивишь цифровой фото камерой, каждая из которых наделена матрицей фотоаппарата. Что такое матрица фотоаппарата, почему ее название матрица цифрового фотоаппарата, какие ее функции.
Почти два столетия прошло с тех пор, как был создан первый прототип фотоаппарата. Принцип работы фотокамеры остался прежним: попадание светового потока через объектив и фиксация на светочувствительном элементе. Ранее использовались пленочные элементы с свойственной им химической реакцией. Новая эра фотоаппаратов преподнесла нам цифровые фотокамеры.
Матрица фотоаппарата, а точнее матрица цифрового фотоаппарата — это электронная схема, состоящая из миллионов крошечных светочувствительных диодов, которые реагируют на световой поток, попадающий на них. Один такой светодиод матрицы цифрового фотоаппарата приносит вашему изображению ровно один пиксель.
Теперь представьте себе матрицу фотоаппарата, передающую 12 миллионов пикселей. Сложно? Вовсе нет: 12 мегапикселей — это площадь матрицы в пикселях. К примеру, если соотношение сторон матрицы 3:4, то на матрице цифрового фотоаппарата будет располагаться 3 тысячи пикселей в столбце и таких столбцов 4 тысячи.
Как выглядит матрица фотоаппарата. Какой физический размер матрицы фотоаппарата?
Особенность электроники матрицы цифрового фотоаппарата заключается в накоплении эклектического заряда в зависимости от количества попадающего света на матрицу фотоаппарата. Если происходит переизбыток энергии на пикселе или группе пикселей матрицы цифрового фотоаппарата, то эта энергия начинает переходить на соседние пиксели. В результате, когда фотографируете солнце вы получаете световой пучок разной окружности.
Важно знать: чем качественнее и дороже матрица, а главное, чем больше физический размер матрицы цифрового фотоаппарата, тем больше расстояние между её пикселями, тем менее заметен эффект распределения энергии на соседние пиксели.
Количество пикселей на матрице должно увеличиваться с увеличением качества и\или размера матрицы цифрового фотоаппарата. Иначе, новые пиксели теряют свою эффективность. Размер матрицы цифрового фотоаппарата — важная характеристика!
Для начала, что это такое. Раньше, в эпоху пленочных фотоаппаратов с этим было просто — вместо матрицы была светочувствительная пленка-негатив. Стандарт был 35мм (физический размер 24×36 мм). В современном же цифровом фотоаппарате вместо пленки устанавливается светочувствительная матрица — интегральная микросхема, состоящая из светочувствительных элементов (фотодиодов). Матрица предназначена для преобразования спроецированного на нее оптического изображения в поток цифровых данных. Фотоматрица оцифровывает («нарезает» на пиксели) то изображение, которое формируется объективом фотоаппарата.
Существуют несколько типов матриц, применяемых в цифровых камерах, основные из которых CCD и CMOS. CCD-матрица обеспечивает лучшие показатели при съемке динамичных и мелких объектов, у нее низкий уровень шума и высокий коэффициент заполнения. CMOS-матрица же используется в изделиях, для которых критична конечная стоимость, благодаря своей недорогой стоимости, низкого энергопотребления.
Итак, физический размер матрицы. Необходимо отметить, что физический размер матрицы — одна из важнейших характеристик фотоаппарата, влияющих на качество получаемых фотографий. Физический размер — это ее геометрический размер (длина и ширина в миллиметрах). Однако чаще всего размеры фотосенсоров чаще всего обозначают в виде дробных частей дюйма, например 1 / 2.5″. Так как эта величина обратная, то и соответственно, размер матрицы больше, если число после дроби меньше. Для примера, приведем соотношение наиболее часто используемых матриц:
Диагональ матрицы | Геометрический размер |
1 / 3.2″ | 3.4 х 4.5мм |
1 / 2.7″ | 4.0 х 5.4мм |
1 / 2.5″ | 4.3 х 5.8мм |
1 / 2.3″ | 4.6 х 6.2мм |
1 / 1.8″ | 5.3 х 7.2мм |
2 / 3″ | 6.6×8.8мм |
1″ | 9.6 х 12.8мм |
APS-C (матрица, в 1.6 раза меньше APS) | 15 х 23мм |
полный формат (APS) | 24 х 36мм |
Проще ориентироваться не на размер матрицы в обратных значениях дюйма, а на кроп-фактор. Кроп-фактор — это коэффициент, показывающий во сколько раз матрица фотоаппарата меньше полного формата. Например, для наиболее распространенного размера матрицы современных мыльниц 1 / 2.3″ кроп-фактор составит 5.62, т.е. матрица в 5.62 раза меньше полноформатной.
Размер матрицы влияет на количество цифрового шума, передаваемого вместе с основным сигналом на матрицу. Наличие цифрового шума, в свою очередь, придает фотографии неестественный вид и создается впечатление, что на фотографии наложена матовая пленка. Чем больше физический размер матрицы, тем больше ее площадь и тем больше света на нее попадает, в результате чего полезный сигнал матрицы будет сильнее и соотношение сигнал / шум будет лучше. Это позволяет получать более яркую, качественную картинку с естественными цветами.
nikon3100.ru
Таблица характеристик матриц цифровых фотоаппаратов
От редакции сайта Vt-tech.eu
Автор данной статьи — Владимир Медведев. Статья была опубликована на личном сайте автора по адресу:
vladimirmedvedev.com/dpi.html
Однако, автор решил полностью переделать сайт и статья пропала.
Статья очень хорошо и доступно раскрывает тему дифракции при высоких значениях диафрагмы, поэтому редакция сайта Vt-Tech никак не могла пройти мимо. Мы извлекли статью из архивов кэширующих сайтов и выложили здесь.
При экспорте статьи немного пострадали картинки: не все изображения из первоначальной статьи доступны.
Надеемся, что автор статьи не будет возражать против размещения её здесь.
Кто здесь
Эту таблицу я сделал уже много лет назад, для наглядного сравнения цифровых фотоаппаратов. В те годы было много путаницы даже с понятием «кропа» и «полного формата», не говоря уже про компактные и среднеформатные аппараты. Скудная информация была разбросана по многочисленным сайтам производителей фототехники, и сравнить камеры наглядно было практически невозможно. Всё это вводило в заблуждение многих фотолюбителей, разжигая яростные споры на профильных форумах.
Чтобы как-то упорядочить ситуацию и привести к одному знаменателю любые камеры — от мыльниц до среднеформатных камер, я решил использовать понятие плотности пикселей — DPI (хотя, возможно, будет правильней сказать ppi). Почему я выбрал именно этот параметр, который раньше нигде не использовался для этого? Просто потому, что имевшаяся в открытом доступе информация, позволяла рассчитывать его идеально точно, без погрешностей. Зная длину и ширину матрицы, а также количество пикселей, я мог без труда, абсолютно точно рассчитать их плотность. В качестве бонуса, понятие плотности пикселей, позволило сравнить матрицу любого размера с разрешением сканов с плёнки (DPI цифрового фотоаппарата и установленное DPI во время сканирования — по сути, одно и то же).
Удобная в использовании, наглядная таблица, позволила двигаться дальше, по пути познания технических характеристик матриц, и, со временем, обросла массой дополнительных «полезностей». Сегодня в таблице собраны самые разные параметры, имеющие отношение к матрицам цифровых фотоаппаратов. Это и размер пикселя, и точный кроп-фактор, и площадь матрицы, и дифракционное ограничение диафрагмы. С помощью этой таблицы можно легко отслеживать тренды развития фототехники, прогнозировать грядущие изменения или просто выбирать камеру.
Разобраться в многочисленных параметрах таблицы сходу не так просто. Помочь фотографу в этом должны специальные статьи, сопровождающие таблицу, раскрывающие её особый смысл.
Приятного чтения!
Часть первая. Увеличивает ли кроп-фактор способность объективов «приближать»?
Поскольку я занимаюсь фотографией дикой природы, часто бывает просто невозможно подойти ближе к объекту съёмки (из-за риска испугать животное или птицу). И тут во всесь рост встаёт проблема нехватки фокусного расстояния объективов (говоря простым языком — способности оптики «приближать удалённые объекты»). На заре цифровой фотографии, было крайне распространено мнение, что камеры с «кропнутой» матрицей увеличивают фокусное расстояние объективов в кроп раз. Тут я постараюсь объяснить, почему неправильно так думать.
Сейчас у меня есть две камеры. Одна полноформатная — Canon EOS 5D Mark II, вторая с кроп-фактором 1,6х — Canon EOS 20D. Кроп-фактор 1,6, означает, что диагональ матрицы 20D в 1,6 раза меньше, чем диагональ матрицы 5D MarK II. 43mm разделить на 27mm равно 1,6.
С кроп-фактором разобрались. Матрица уменьшилась. Но оптика то осталась прежней. Объектив, например, 300мм подходит как к 20D, так и к 5D Mark II. Что будет, если один и тот же кадр снять на 5D Mk II и на 20D? Самая наглядная и точная метафора — взять большой напечатанный кадр, и вырезать из него середину ножницами. Какая разница, резать матрицу или уже готовый кадр? Вот так:
Конечно, на вырезанном кадре птица выглядит крупнее. Часто, начинающими фотографами, это свойство кропа ошибочно воспринимается как плюс. Но на самом деле, плюсом вовсе не является. Зачем спешить, и «вырезать кадр» до съёмки? А если птица подлетит ближе, или нам захочется вырезать не середину, а край снимка? На полноформатной матрице мы можем резать как угодно, а можем вообще не резать. А вот кроп вариантов уже не оставляет. Вылезшие за край кадра крылья уже не вернуть, и потенциально хороший снимок отправляется в корзину.
примеры основных кроп-факторов: 1.3х, 1.6х и 2х
Спорить, что лучше, кроп или полный формат я тут не стану. Кроп может быть дешевле или быстрее. Тут у каждого своё решение. Вместо ненужных споров, предлагаю ответить на вопрос, какая характеристика камеры может по-настоящему способствовать качественному приближению? И ответ прост — плотность пикселей (столбик dpi в таблице). Для того, чтобы понять, почему это так, давайте рассмотрим ещё один пример из жизни. В этот раз, для удобства, возьмём две полноформатные камеры — 5D и 5D Mark II. Особо подчеркну, что для конечного результата совершенно не важно, полный формат у нас или кроп, тут играет роль только один параметр — плотность пикселей. У 5D это 3101 dpi, у 5D Mark II — 3955 dpi.
Представьте сафари: яркий солнечный день, низкая чувствительность ISO, отличная оптика. И вдруг мы видим дикого леопарда в 100 метрах от нас. Делаем снимок, и зверь скрывается. 100 метров — это далеко. Для того, чтобы кадр хорошо смотрелся, нам волей-неволей придётся сильно кадрировать, оставив 1/10 от полного кадра (для простоты подсчёта). Математика подсказывает, что кадр с камеры 5D (12мп) после кадрирования будет состоять из 1,2мп (12 разделить на 10), что очень мало и не годится для качественной печати. А вот снимок с 5D MII (21мп) будет состоять из 2,1 мп, что уже значительно лучше! И я ещё раз хочу подчеркнуть — совершенно не важно, кроп у нас, или полный формат. 20D, у которой плотность 3955dpi (как и у 5D Mark II), аналогичный кадр, в тех-же самых условиях, тоже состоял бы из 2,1 мп. Несмотря на то, что матрица там всего 8 мегапикселей. Тут играет роль только плотность пикселей.
Леопарда снять одновременно с двух камер не представляется возможным, поэтому я попробовал тест попроще, чтобы наглядно показать разницу от плотности пикселей. Два тестовых кадра, были сняты со штатива, с одинакового расстояния, с одинаковой оптики, с одинаковым фокусным расстоянием:
полный кадр выглядел так
при очень сильном приближении становится видна разница
Это не сравнение 450D против 1D Mark III. Это сравнение 3514 dpi против 4888 dpi. В этих условиях, аналогичный результат будет на любой другой паре камер с подобной плотностью пикселей. Просто когда я писал статью, у меня были именно эти две камеры, вот и всё.
Ps:
- Тесты проводились в хороших условиях, и рассматривались под большим увеличением. В реальной жизни, скорее всего, разница будет заметна ещё меньше. Стоит оно того или нет, решать только вам.
- Разумеется, качество 21 мегапикселя 5D Mark II, в сравнении с 12 мегапикселями 5D, будет заметно не только при сильном кадрировании. Надеюсь, это и так всем понятно.
Часть вторая. Меньше пиксель — больше шум
Из первой части можно сделать вывод — давайте наращивать плотность пикселей, что бы картинка была лучше. Но не всё так просто. Чем больше плотность пикселей, тем меньше площадь каждого конкретного пикселя (такой столбик тоже есть в таблице). Чем меньше площадь пикселя, тем меньше фотонов света он улавливает. Фотоны — это полезный сигнал. Чем их меньше, тем хуже соотношение сигнал/шум, тем хуже чувствительность камеры.
Скажу просто — камеры, которые мне приходилось тестировать, с размером пикселя менее 6 микрон, имеют плохую чувствительность и более высокий шум. Это моё мнение, мой опыт. Пока что никаких исключений в этом правиле я не видел. Возможно, когда-нибудь, технологии позволят делать новые камеры более чувствительными, но пока так. Возникает вопрос, что выбрать? Плотность пикселей или чувствительность? Тут всем придётся искать свой собственный ответ. Кому интересно моё мнение, смотрите следующие два абзаца, но… никому его не навязываю. 🙂
Я проанализировал свои снимки, за последние несколько лет, размышляя, может ли большая плотность пикселей увеличить качество моих снимков. Результат оказался очень неожиданным: снимков, качество которых можно улучшить за счёт плотности пикселей, оказалось крайне мало. Помимо моих кривых рук, виной тому стали многие естественные факторы — шумы, шевелёнка, качество оптики, «воздух», не точный АФ и пр. Причём, 90% снимков, которые можно было бы улучшить повышенной плотностью пикселей, в улучшении и не нуждались — все они и так обладали достаточным качеством.
Показательно, что большая часть некачественных фотографий страдала из-за недостатка чувствительности. Шевелёнка и шумы мне, как фотографу дикой природы, сейчас мешают гораздо сильнее. 16-25 мегапикселей на полном формате — мой идеал на сегодняшний день.
Также не стоит забывать про ДД — динамический диапазон, который очень тесно связан с шумами, т.к. они ограничивают его в тенях. Меньше пиксель — меньше и ДД. Выводы тут каждый сам для себя сделает. А тех, кому важнее окажется плотность пикселей, я хочу предупредить об ещё одном коварном враге, который будет вечно подстерегать Вас, и от которого Вам не скрыться. По крайней мере в этой Вселенной. Это дифракция…
Часть третья. Дифракция в фотографии. Теория
Для этой части моей статьи все рисунки взяты иззамечательного учебного пособия про дифракцию:
Tutorials: difraction & photography. Очень рекомендую
его всем, кто хочет глубоко разобраться в этой теме.
В этой части матрица ни причём, а отдуваться всё равно приходится. За физику. Какое отношение имеет дифракция к матрице цифрового фотоаппарата? Никакого. Но давайте рассмотрим, что же мы имеем ввиду под словом дифракция, когда говорим о головной боли фотографов?
Если не вдаваться в подробности, то дифракция — это физическое явление, которое мешает нам сильно закрывать диафрагму, снижая качество получаемого изображения.
Если рассмотреть причины дифракции, то мы увидим, что появляется она при прохождении света через диафрагму. После прохождения диафрагмы, лучи идут уже не столь прямо, как нам хотелось бы, а немного «расслаиваются», расходятся в стороны. В результате каждый лучик образует на поверхности матрицы не просто точку, а «кружок и круги по воде» — дифракционные кольца, или, как это ещё называют диск Эри (по фамилии учёного, английского астронома — George Biddell Airy):
Разумеется, что, в отличие от хорошо сфокусированной точки, подобные диски могут залезть на соседние пиксели, если те расположены достаточно плотно. А когда они лезут на соседние пиксели, мы прощаемся с хорошей резкостью.
Давайте рассмотрим это явление на примере. Зная размер пикселей, мы без труда построим сетку, обозначающую границы пикселей (пунктиром). Далее по формуле мы вычисляем диаметр диска Эри и для упрощения представляем его в виде пятна света. И попробуем наложить диски Эри, характерные для самых распространённых диафрагм, на нашу сетку. Для примера я взял размер пикселя камеры 5D MarkII, а значения диафрагм указаны под каждым рисунком:
Как вы видите, при неизменной сетке пикселей кружок Эри растёт. При f/16 он уже значительно залезает на соседние пиксели, что в реальной жизни будет размывать картинку, не давая нам попиксельной резкости. А при f/22 этот диск занимает почти всю площадь 9 пикселей!
Зная размеры этого кружка, я могу рассчитать максимально закрытую диафрагму, после которой дальнейшее закрытие, будет ухудшать фотографию. Этот параметр мой коллега с the-digital-picture.com называет DLA (diffraction limited aperture), что соответствует русскому термину ДОД (дифракционное ограничение диафрагмы). Однако мои расчёты числового значения этого параметра несколько отличаются от вычислений автора вышеуказанного сайта. Например, в своей формуле он, видимо, каким-то образом учитывает и размер всей матрицы (в частности, при равной плотности пикселей, значения DLA 40D (f/9.3) и 1D MarkIV (f/9.1) различаются). Это, конечно же, не может быть верным, когда мы говорим о дифракции на уровне пикселей. Впрочем, наши результаты не сильно расходятся, так что разницей можно принебречь. К тому же, в силу сочетания очень многих факторов (нечеткость границ диска, сложная структура ячеек матрицы и пр.), невозможно с абсолютной точностью назвать величину DLA, после которой начинает наблюдаться деградация изображения.
Итак, давайте посмотрим, как это работает. Для 5D MarkII (как и для 20D), DLA составляет f/10,8, что очень близко к рисунку выше с подписью f/11. В то же время, для Canon 1D (всего 4 mp, — самые крупные ячейки матрицы среди всех камер Canon), этот параметр составляет f/19,1. Давайте закроем диафрагму до f/16, и посмотрим, как будет выглядеть диск Эри, спроецированный на сетку пикселей 1D и на сетку 5D MarkII (или 1Ds MarkIII или 20D):
Как видно из этого примера, что позволено Юпитеру, не позволено быку. При съёмке на 1D мы легко можем закрыть диафрагму до f/16, а на 5D Mark II это приведёт к снижению возможной детализации.
Часть четвёртая. Дифракция в фотографии. Практика
Выше была лишь сухая теория. Она абсолютно верна, но не учитывает того, что оптика очень часто не способна выдать достаточной детализации, на диафрагмах уже DLA. Так как же дело обстоит на практике?
Действительно, оптика не всегда даёт качество, которое позволило бы нам видеть попиксельную резкость. Более того, как мы знаем, качество изображения растёт по мере закрытия диафрагмы. Из-за этого у качественной оптики мы можем заметить ухудшение качества из-за дифракции на диафрагмах близких к DLA, а вот у плохих это может произойти на значительно позже. Однако, если ухудшение наступает на одно или даже два значения диафрагмы уже DLA, это означает, что матрица камеры с этим объективом никогда не получает достаточно детаелй. Т.е. попиксельной резкости там не будет никогда, иначе дифракцию мы бы смогли заметить на уровне числового значения DLA.
Что же мы можем наблюдать на камерах с большой плотностью пикселей? Для примера возьмём новую (на момент написания этих строк) камеру Canon EOS 7D. DLA там составляет f/7,2. Что это значит? Это значит, что 7D сможет выдать попиксельную детализацию только на диафрагмах менее 7,2. Возьмём хорошую оптику и посмотрим на результат. Для этого обратимся за помощью к ресурсу The Digital Picture. Там мы можем найти снимок специальной тестовой таблицы на камеру 7D с использованием хорошей оптики (Canon EF 200mm f/2.0L IS USM). Сравним кадр, сделанный при диафрагме 5,6 и 8. Как мы видим, резкость незначительно ухудшается — теория работает! Теперь сравним 5,6 и 11 — вот тут уже идёт заметное падение резкости, причём не только по центру, но даже в углах!
Весь парадокс камер с высокой плотностью пикселей, что оптике и так сложно передать значительное количество деталей, а передать значительное количество деталей на диафрагмах шире, чем f/8… боюсь это задача лишь для действительно великолепных объективов. Таких, как Canon EF 200mm f/2.0L IS USM ~ за 6000$…
В заключение, для невнимательных читателей, я хочу ещё раз подчеркнуть, что дифракция не является параметром матрицы, искажает изображение до матрицы и не зависит от марки камеры (а если и зависит, разница минимальна и я её не учитываю).
Благодарю Дмитрия (Доктор Ктулху) за помощь, оказанную в процессе редактирования текста статьи.Таблица характеристик матриц цифровых фотоаппаратов
Модель | Произв | Тип | Mp* | Кроп-фактор | Размер пикселя (микрон) | Площадь (мм2 ) | Размер матрицы (мм) | Размер матрицы (пикселей) |
DPI | DLA** | FF*** (mp) |
C a n o n | |||||||||||
1D | Kodak | CCD | 4,1 | 1.3 х | 11,6 µm | 548,2 | 28,7 x 19,1 | 2464 x 1648 | 2181 | f/19,1 | 6,4 |
D30 | Canon | CMOS | 3,1 | 1.6 х | 10,5 µm | 342,8 | 22,7 x 15,1 | 2160 x 1440 | 2417 | f/17,6 | 7,8 |
1Ds | Canon | CMOS | 11,0 | 1.0 х | 8,8 µm | 852 | 35,8 x 23,8 | 4064 x 2704 | 2883 | f/14,8 | 11,1 |
1D Mark II | Canon | CMOS | 8,2 | 1.3 х | 8,2 µm | 548,2 | 28,7 x 19,1 | 3504 x 2336 | 3101 | f/13,8 | 12,9 |
5D | Canon | CMOS | 12,7 | 1.0 х | 8,2 µm | 852 | 35,8 x 23,9 | 4368 x 2912 | 3101 | f/13,8 | 12,9 |
300D/D60/10D | Canon | CMOS | 6,3 | 1.6 х | 7,4 µm | 342,8 | 22,7 x 15,1 | 3072 x 2048 | 3400 | f/12,4 | 15,5 |
1Ds Mark II | Canon | CMOS | 16,6 | 1.0 х | 7,2 µm | 864 | ~ 36 x 24 | 4992 x 3328 | 3514 | f/12,1 | 16,5 |
1D Mark III | Canon | CMOS | 10,1 | 1.3 х | 7,2 µm | 525,5 | 28,1 x 18,7 | 3888 x 2592 | 3514 | f/12,1 | 16,5 |
1D x | Canon | CMOS | 17,9 | 1.0 х | 6,9 µm | 864 | 36 x 24 | 5184 x 3456 | 3657 | f/11,7 | 17,9 |
350D/20D/30D | Canon | CMOS | 8,2 | 1.6 х | 6,4 µm | 337,5 | 22,5 x 15,0 | 3504 x 2336 | 3955 | f/10,8 | 20,9 |
5D II / 1Ds III | Canon | CMOS | 21,0 | 1.0 х | 6,4 µm | 864 | ~ 36 x 24 | 5616 x 3744 | 3955 | f/10,8 | 20,9 |
5D III | Canon | CMOS | 22,1 | 1.0 х | 6,25 µm | 864 | 36 x 24 | 5760 x 3840 | 4064 | f/10,6 | 22,1 |
1000D/400D/40D | Canon | CMOS | 10,1 | 1.6 х | 5,7 µm | 328,6 | 22,2 x 14,8 | 3888 x 2592 | 4455 | f/9,6 | 26,6 |
Canon EOS 1D Mark IV | Canon | CMOS | 16,1 | 1.3 х | 5,7 µm | 518,9 | 27,9 x 18,6 | 4896 x 3264 | 4455 | f/9,6 | 26,6 |
Canon EOS 450D | Canon | CMOS | 12,2 | 1.6 х | 5,2 µm | 328,6 | 22,2 x 14,8 | 4272 x 2848 | 4888 | f/8,7 | 32,0 |
500D, 50D | Canon | CMOS | 15,1 | 1.6 х | 4,7 µm | 332,3 | 22,3 x 14,9 | 4752 x 3168 | 5413 | f/7,9 | 39,2 |
7D / 60D / 600D | Canon | CMOS | 17,9 | 1.6 х | 4,3 µm | 332,3 | 22,3 x 14,9 | 5184 x 3456 | 5905 | f/7,2 | 46,7 |
7D Mark II | Canon | CMOS | 19.96 | 1.6 х | 4,1 µm | 336 | ~ 22,4 x 15,0 (?) | 5472 x 3648 | ~ 6177 | f/6.9 | 50,3 |
5Ds (r) | Canon | CMOS | 50,3 | 1.0 х | 4,1 µm | 864 | 36 x 24 | 8688 x 5792 | 6130 | f/6.9 | 50,3 |
N i k o n | |||||||||||
D1/D1H | Sony | CCD | 2,6 | 1.5 х | 11,9 µm | 367,4 | 23,7 x 15,5 | 2000 x 1312 | 2143 | f/20 | 6,2 |
D2H | Nikon | JFET | 4,0 | 1.5 х | 9,6 µm | 367,4 | 23,7 x 15,5 | 2464 x 1632 | 2641 | f/16,1 | 9,3 |
D1X**** | Sony | CCD | 5,3 | 1.5 х | 5,9/11,9 | 369,7 | 23,7 x 15,6 | 4028 x 1324 | — | — | — |
D700/D3/D3s | ? | CMOS | 12.1 | 1.0 х | 8,4 µm | 860,4 | 36,0 x 23,9 | 4256 x 2832 | 3003 | f/14,1 | 12,2 |
D4 | ? | CMOS | 16,2 | 1.0 х | 7,3 µm | 860,4 | 36,0 x 23,9 | 4928 x 3280 | 3476 | f/12,4 | 16,2 |
D40/D50/D70/D100 | Sony | CCD | 6,0 | 1.5 х | 7,8 µm | 367,4 | 23,7 x 15,5 | 3008 x 2000 | 3237 | f/13,1 | 14,0 |
D3000/D40x/D60/D80/D200 | Sony | CCD | 10,0 | 1.5 х | 6,1 µm | 372,9 | 23,6 x 15,8 | 3872 x 2592 | 4167 | f/10,3 | 23,4 |
D3X | ? | CMOS | 24,4 | 1.0 х | 5,9 µm | 861,6 | 35,9 x 24 | 6048 x 4032 | 4279 | f/9,9 | 24,4 |
D5000 / D90 | Sony | CMOS | 12.2 | 1.5 х | 5,4 µm | 369,7 | 23,7 x 15,6 | 4288 x 2848 | 4637 | f/9 | 28,8 |
D300 (s) / D2X (s) | Sony | CMOS | 12.2 | 1.5 х | 5,4 µm | 369,7 | 23,7 x 15,6 | 4288 x 2848 | 4637 | f/9 | 28,8 |
D800 (e) | ? | CMOS | 36,2 | 1.0 х | 4,9 µm | 861,6 | 35,9 x 24 | 7360 x 4912 | 5207 | f/8,2 | 36,3 |
D7000/5100 | Sony | CMOS | 16.1 | 1.5 х | 4,8 µm | 370,5 | 23,6 x 15,7 | 4928 x 3264 | 5303 | f/8,1 | 37,4 |
S o n y | |||||||||||
A 100/200/230/300/330 | Sony | CCD | 10.0 | 1.5 х | 6,1 µm | 372,9 | 23,6 x 15,8 | 3872 x 2592 | 4167 | f/10,2 | 23,3 |
A900 / A850 | Sony | CMOS | 24,4 | 1.0 х | 5,9 µm | 861,6 | 35,9 x 24 | 6048 x 4032 | 4279 | f/9,9 | 24,4 |
A500 | Sony | CMOS | 12.2 | 1.5 х | 5,7 µm | 366,6 | 23,5 x 15,6 | 4272 x 2848 | 4617 | f/9,6 | 28,6 |
A700 | Sony | CMOS | 12.2 | 1.5 х | 5,5 µm | 368,2 | 23,5 x 15,6 | 4288 x 2856 | 4635 | f/9,2 | 28,8 |
A350/A380 | Sony | CCD | 14.0 | 1.5 х | 5,1 µm | 369 | 23,5 x 15,7 | 4592 x 3056 | 4963 | f/8,6 | 33,0 |
Sony A550 | Sony | CMOS | 14.0 | 1.5 х | 5,1 µm | 365 | 23,4 x 15,6 | 4592 x 3056 | 4984 | f/8,6 | 33,3 |
SLT-A57/35/55/A580 | Sony | CMOS | 16,0 | 1.5 х | 4,8 µm | 366,6 | 23,5 x 15,6 | 4912 x 3264 | 5309 | f/8,1 | 37,7 |
SLT-A77 / A65 / NEX-7 | Sony | CMOS | 24,0 | 1.5 х | 3,9 µm | 366,6 | 23,5 x 15,6 | 6000 x 4000 | 6485 | f/6,5 | 54 |
F u j i f i l m***** | |||||||||||
S2 Pro | Fujifilm | CCD | 6,1 | 1.6 х | 7,6 µm | 356,5 | 23 x 15.5 | 3024 x 2016 | 3340 | f/12,8 | 14,9 |
S3/S5 Pro | Fujifilm | CCD | 6,1 | 1.6 х | 7,6 µm | 356,5 | 23 x 15.5 | 3024 x 2016 | 3340 | f/12,8 | 14,9 |
P e n t a x | |||||||||||
K100D (Super) /K110D | Sony | CCD | 6,0 | 1.5 х | 7,8 µm | 368,95 | 23,5 x 15,7 | 3008 x 2008 | 3251 | f/13,1 | 14,2 |
K10D/K200D/K2000 | Sony | CCD | 10,0 | 1.5 х | 6,1 µm | 369 | 23,5 x 15,7 | 3872 x 2592 | 4185 | f/10,3 | 23,6 |
645D | Kodak | CCD | 39,5 | 0.7 х | 6,1 µm | 1452 | 44 x 33 | 7264 x 5440 | 4193 | f/10,2 | 24,5 |
K-r | ? | CMOS | 12.2 | 1.5 х | 5,5 µm | 372,9 | 23,6 x 15,8 | 4288 x 2848 | 4615 | f/9,3 | 28,3 |
K20D/K-7 | Samsung | CMOS | 14.5 | 1.5 х | 5,0 µm | 365 | 23,4 x 15,6 | 4672 x 3104 | 5071 | f/8,4 | 34,5 |
K-5 | Sony | CMOS | 16.1 | 1.5 х | 4,8 µm | 370,5 | 23,6 x 15,7 | 4928 x 3264 | 5303 | f/8,1 | 37,4 |
S i g m a****** | |||||||||||
SD14/SD15/DP1/DP2 | Foveon | CMOS | 4,7 | 1.7 х | 7,8 µm | 285,7 | 20,7 x 13,8 | 2640 x 1760 | 3239 | f/13,1 | 14,1 |
SD1 (m) | Foveon | CMOS | 15,4 | 1.5 х | 5 µm | 384 | 24 x 16 | 4800 x 3200 | 5080 | f/8,5 | 34,6 |
S a m s u n g | |||||||||||
GX-20 | Samsung | CMOS | 14.6 | 1.5 х | 5,0 µm | 365 | 23,4 x 15,6 | 4688 x 3120 | 5089 | f/8,4 | 34,6 |
NV40 | ? | CCD | 10,1 | 6,0 x | 1,7 µm | 28,2 | 6,13 x 4,60 | 3648 x 2736 | 15116 | f/2,9 | 306 |
O l y m p u s | |||||||||||
E400/410/420/450 | Matsushita | NMOS | 9.98 | 2.0 х | 4,7 µm | 225 | 17,3 x 13,0 | 3648 x 2736 | 5356 | f/7,9 | 38,4 |
E510/520/E3 | Matsushita | NMOS | 9.98 | 2.0 х | 4,7 µm | 225 | 17,3 x 13,0 | 3648 x 2736 | 5356 | f/7,9 | 38,4 |
E620/E30/E5 | Matsushita | NMOS | 12.2 | 2.0 х | 4,3 µm | 225 | 17,3 x 13,0 | 4032 x 3024 | 5919 | f/7,3 | 48,7 |
E-M5 | Matsushita | NMOS | 15.9 | 2.0 х | 3,7 µm | 225 | 17,3 x 13,0 | 4608 x 3456 | 6765 | f/6,3 | 63,7 |
L e i c a | |||||||||||
M8 | Kodak | CCD | 10 | 1.3 x | 6,8 µm | 479,7 | 26,8 x 17,9 | 3936 x 2630 | 3731 | f/11,4 | 18,1 |
M9 | Kodak | CCD | 18,1 | 1.0 x | 6,8 µm | 864 | 36 x 24 | 5212 x 3472 | 3731 | f/11,4 | 18,1 |
S2 | Kodak | CCD | 37.5 | 0,8 x | 6,0 µm | 1350 | 45 x 30 | 7500 x 5000 | 4230 | f/10 | 22,4 |
H a s s e l b l a d | |||||||||||
h4DII-31 | Kodak | CCD | 31,6 | 0,8 x | 6,8 µm | 1463 | 44,2 x 33,1 | 6496 x 4872 | 3731 | f/11,4 | 18,1 |
h4DII-39 | Kodak | CCD | 39,0 | 0,7 x | 6,8 µm | 1807 | 49,1 x 36,8 | 7212 x 5412 | 3731 | f/11,4 | 18,1 |
h4DII-50 | Kodak | CCD | 50,1 | 0,7 x | 6,0 µm | 1807 | 49,1 x 36,8 | 8176 x 6132 | 4230 | f/10 | 22,4 |
P h o n e s | |||||||||||
iPhone 3Gs | OV3650 | CMOS | 3,1 | 9.73 x | 1,75 µm | 9,8 | 3,63 x 2,71 | 2048 x 1536 | 14343 | f/2,95 | 275 |
iPhone 4 | OV5650 | CMOS | 5,0 | 7,64 x | 1,75 µm | 15,7 | 4,59 x 3,42 | 2592 x 1936 | 14343 | f/2,95 | 275 |
iPhone 4s | OmniVision | CMOS | 8,0 | 7,64 x | 1,4 µm | 15,7 | 4,59 x 3,42 | 3264 x 2448 | 18100 | f/2,37 | 438,7 |
Nokia 808 | ? | CMOS | 41,4 | 3,5 x | 1,4 µm | 81 | 10,8 x 7,5 | 7728 x 5368 | 18100 | f/2,37 | 438,7 |
В эту таблицу я вложил много сил и своего времени, её копирование запрещено (с) VladimirMedvedev.com
Примечания:
1 Mp — количество мегапикселей в фотографии
2 DLA (diffraction limited aperture) — ДОД (дифракционное ограничение диафрагмы). Самая узкая диафрагма при которой возможна попиксельная резксть (подробнее см раздел Дифракиция, перед таблицей).
3 36х24 mp — показывает предполагаемое количество пикселей на полноформатной матрице, сделанной по технологии рассматриваемой камеры. Т.е., например, если сделать полноформатную матрицу на основе Canon 50D, то она будет на 39,2 mp.
4 Пиксели Nikon D1x прямоугольные. Реальные 5 mp, получаемые с матрицы растягивались в 10 mp фотографию. Рассчитывать dpi и dla для такой техники смысла нет.
5 Fujifilm — Подсчитывая dpi сенсора у камер Fujifilm с нестандартной матрицей (с ячейками двух типов), учитывались только основные пиксели. Из-за структуры матрицы, было бы не правильно считать и основные и дополнительные пиксели. Основные пиксели занимают практически весь полезный объём, а маленькие, дополнительные, — лишь небольшие ячейки между ними (для более подробной информации смотрите официальный сайт Fujifilm).
6 Sigma — Матрицы Foveon, которые используются в камерах компании Sigma, состоят из трёх слоёв (RGB) и, в отличае от других камер, каждый пиксель на фотографии формируется из трёх пикселей матрицы. Это происходит потому, что пиксели расположены один над одним и не несут дополнительной информации о яркости (только о цвете). Именно поэтому, при матрице в ~ 14 mp, фотографии получаются всего 4 mp. Плотность пикслов рассчитывается для одного слоя.
PS Не могу не отметить, что на самом деле, фотоприёмник занимает далеко не всю площадь пикселя, некоторое место приходится уделять также и, так называемой, обвязке. Для того, чтобы увеличить полезную площадь, производители создают специальные собирающие микро-линзы на матрице:
Чем с большей площади собирают свет микролинзы, тем более эффективной должна быть, в теории, работа матрицы, и тем меньше должно быть шумов. Но это пока только в теории…
vt-tech.eu
таблица. Физический размер матрицы фотоаппарата
Практически каждый современный человек сталкивался с непростой ситуацией по выбору цифрового фотоаппарата. Как его выбрать, чтобы получить качественные снимки? От чего зависит физическое качество снимка? Попытаемся, не углубляясь в тонкости, ответить на эти вопросы. Художественную ценность фотографии в данной статье рассматривать не будем.
Определяющие характеристики цифровой камеры – это количество мегапикселов и размер матрицы фотоаппарата
Что такое пиксел и матрицы? Матрица (синоним – сенсор) – это прямоугольный плоский элемент, заменивший фотоплёнку в старой фотокамере и преобразующий в электрические сигналы изображение, которое попало в неё через объектив. Эту информацию процессор аппарата после оцифровки записывает на карту памяти в виде файла. На матрице расположены пикселы — базовые элементы или точки (микроскопические фотоэлементы-транзисторы), из которых формируется цифровое изображение. Мегапиксел – миллион пикселов. Большинство покупателей ориентируются именно на этот параметр. Производителю цифрового аппарата намного дешевле установить в своё устройство новую матрицу с увеличенным количеством мегапикселов и запустить его в производство, нежели переработать практически всё устройство камеры и обеспечить его большой матрицей. Поэтому в магазине продавец заостряет внимание покупателя именно на параметре, отражающем число мегапикселов, и скромно замалчивает размер матрицы фотоаппарата.
Какие размеры матриц в фотоаппаратах различной стоимости?
Чем больше размеры пиксела и (как следствие) матрицы, тем качественнее снимок. Большой размер пиксела лучше воспринимает свет и точнее определяет цвет. Чем меньше размеры пиксела и матрицы, тем больше помех (шумов) на снимке. Поэтому много мегапикселов вовсе не означает, что качество снимка будет отличное. Размер матрицы – вот определяющий качество снимка и стоимость аппарата параметр. На нижеследующем снимке видна матрица зеркальной камеры. Очистка её производится с помощью специальной программы, которая установлена в фотоаппарате. Прикасаться к матрице руками и любыми предметами абсолютно недопустимо. Это прямой путь к выходу её из строя.
Какие размеры матриц фотоаппаратов бывают, в каких камерах они установлены?
Ответ на этот вопрос ниже.
Размеры матриц фотоаппаратов: таблица
Формат или дюймы диагонали | Физический размер, мм | Пример устройства |
FF (FullFrame), полный кадр | 36 × 24 | Дорогие профессиональные фотокамеры. Canon, Nikon, Sony, Leica |
APS-C | 23,5 × 15,6 | Зеркалки широкого ценового диапазона Nikon, Canon, Sony |
APS-C | 22,3 × 14,9 | Зеркалки широкого ценового диапазона Canon, Sony, продвинутые беззеркалки |
4/3″ или Micro 4/3 | 17,3 × 13,0 | Беззеркалки широкого ценового диапазона Panasonic, Olympus |
1″ | 12,8 × 9,6 | Беззеркалки Nikon, Samsung и продвинутые компактные фотоаппараты |
1/2,3″ | 6,16 × 4,62 | Подавляющее большинство мыльниц |
1/3″ | 4,69 × 3,52 | Фотокамеры смартфонов |
Рекомендации по выбору фотокамеры
Если вы выбираете из нескольких устройств фотоаппарат по количеству мегапикселов, то окончательный вывод разумно делать после того, как выясните, матрицы какого размера в них установлены. Выбор стоит сделать в пользу той фотокамеры, в которой установлена матрица самого большого размера.
Если вы хотите снимать на камеру с большой матрицей, придётся мириться с её большими размерами и весом. Проанализировав рынок фотоаппаратов, становится понятно, что не существует пока небольших и дешёвых полнокадровых камер. А массовая мобильная фототехника сильно ограничена небольшим размером матрицы.
Если вы не предполагаете заниматься фотографией профессионально, то и не стоит тратиться на дорогой фотоаппарат с большим сенсором. Обычные цифровые дешёвые фотоаппараты (современные мыльницы) справятся с этой задачей ненамного хуже навороченных зеркалок и порадуют вас приличными снимками.
Не стоит забывать, что камеры в современных смартфонах также имеют неплохие параметры, которых вполне достаточно для оперативного создания хорошего снимка.
В заключение заметим, что на получение качественного снимка влияет много факторов. Самый важный из них – профессионализм фотографа. И расхожее мнение о том, что крутая камера – залог прекрасных снимков, так же далеко от истины, как и то, что дорогая кисть у художника – гарантия создания шедевров. Фотоаппаратура – всего лишь инструмент. Фотографирует человек, а не камера. Тем не менее в арсеналах у знаменитых фотохудожников трудно найти дешёвую мыльницу. Выбор за вами.
fb.ru
Размеры матриц в камере смартфона: какие и где встречаются
О том, что не в мегапикселях счастье, уже знают многие пользователи цифровой фототехники. Данная характеристика говорит лишь о том, какие размеры будет иметь фото при просмотре на дисплее, но не более того. На качество получаемого кадра влияют значение апертуры (светосилы), фокусное расстояние, тип матрицы, наличие/отсутствие оптического зума и стабилизации, вид автофокуса, размеры матрицы. О последнем параметре и пойдет речь в нашем материале.
Матрица камеры смартфона – это заменитель пленки в аналоговых фотоаппаратах. Она представляет собой поверхность, покрытую микроскопическими светочувствительными транзисторами. Каждый из них улавливает часть отраженного от предметов света, пропущенного через объектив, и в зависимости от длины оптической волны регистрирует значение. Каждому оттенку соответствует своя частота и длина излучения, за счет этого достигается «запоминание» цвета. Таким образом матрица камеры передает информацию процессору, которая записывается в файл изображения.
Матрица, наряду с объективом, является главной деталью камеры смартфона. Мегапиксели – это количество транзисторов, размещенных на ее поверхности. То есть, цифра в 13 МП означает, что на матрице находится около 13 миллионов эффективных светочувствительных транзисторов.
На что влияет размер матрицы
Производителям камер для смартфонов (самые известные из них – Sony, LG, Samsung, Philips, OmniVision) приходится искать компромиссы между габаритами и качеством матрицы. Дело в том, что при уменьшении размера пикселя, он начинает улавливать меньше света, становится менее чувствительным. А если оставить размеры пикселя прежними, наращивая их количество, то увеличится сам модуль камеры. В зеркалках это не страшно, а вот в смартфонах, толщиной 5-10 мм, каждый микрометр имеет значение.
В итоге в смартфонах, при увеличении мегапикселей, за счет миниатюризации транзисторов, каждый из них улавливает меньше света. Детализация картинки растет, но четкость изображения не меняется. В таких условиях камера на 8 МП не уступит камере на 16 МП, с таким же размером матрицы, а кое-где и обойдет ее.
Матрица камеры в смартфоне
Ультрапиксели
Ультрапиксели – это маркетинговый термин, введенный компанией HTC при презентации флагмана One M7. Под ним подразумевается матрица, разрешение которой специально уменьшено, с целью увеличения размеров пикселя до уровня полноценных фотоаппаратов. К примеру, упомянутый смартфон имел пиксели с размерами 2 мкм, что почти вдвое больше размеров транзисторов у традиционных матриц (1,1 мкм).
Еще в середине прошлого десятилетия, когда большинство смартфонов имели камеру на 0,3, 1,3 или 2 МП, увеличенные пиксели были обыденным делом. Таковыми обладали флагманы 2006 года Nokia N73 и N95, с пикселями на 5 мкм. Но массовая популяризация камер на 8-13 МП побудила HTC внедрить новый термин, дабы убедить клиентов, что их камера на 4 МП не хуже конкурентов на 8-13 МП.
Потом об ультрапикселях забыли, пока Samsung не выпустили на свет Galaxy S7, с технологией, которую объявили как UltraPixel, где размер пикселя был равен 1.4 мкм. Это позволило матрице захватывать больше света в темноте и делать более четкие снимки за счет увеличения матрицы, в сравнении с Galaxy S6.
Популярные размеры матриц в смартфонах
Размеры матриц цифровых фотокамер исторически принято измерять в дюймах. Но дюймы эти – не простые английские, а «видиконовые». Традиция их применения устоялась в прошлом столетии, когда кинокамеры были аналоговые. Регистрирующая ЭЛМ (электронно-лучевая мишень), именуемая видиконом, имела полезный размер, равный 2/3 от внешнего размера. Поэтому видиконовый дюйм равен 2/3 английского, или 17 мм. Матрица 1/3″ означает, что ее диагональ составляет одну третью от 17 мм, или около 5,66 мм.
1/4″
Самый маленький размер матрицы в камере смартфона, выпускаемого в современности. При таких габаритах матрица вмещает 8 миллионов транзисторов, стандартного размера 1,12 мкм. Такими камерами оснащаются бюджетные китайские смартфоны. Качество фотосъемки оставляет желать лучшего, зато достигается компактность. Поэтому подобными матрицами спереди оборудуют флагманские модели с передней камерой на 8 МП.
1/3,2″
Распространенный размер для камер с разрешением 8 МП, но увеличенным размером пикселя до 1,4 мкм. Такая матрица камеры ранее устанавливалась в Google Nexus 5, Meizu MX3, Moto G 2014. Сейчас подобная используется в бюджетных камерафонах (вроде UMI Rome X). Также она может устанавливаться в роли фронталки во флагманах, вроде ZTE Nubia Z9.
1/3″
Еще один ходовый размер матрицы, используемой во многих смартфонах. При сохранении стандартного размера пикселя 1,12 мкм, она обеспечивает разрешение 13 МП. Такими матрицами оснащены камеры Xiaomi Redmi Note 2 и 3, Mi 4c, Meizu M2 и M3 (как Mini, так и Note), Samsung Galaxy J5 2016, Samsung Galaxy S4 и многие другие. Отдельно выделяется Xiaomi Redmi Note 3 Pro, оснащенный матрицей такого размера, но с разрешением 16 МП. Уменьшение пикселя до 1 мкм позволило улучшить детализацию при ярком освещении, но сделало смартфоны хуже приспособленными к условиям средней и слабой освещенности.
Также стоит отметить iPhone 5s и 6, у которых размеры матрицы составляют 1/3″, но разрешение – всего 8 МП. За счет увеличенных пикселей эти смартфоны обеспечивают качество фото, не уступающее (а иногда и превосходящее) конкурентам с 13 и 16 МП. Такой же размер матрицы имеет и iPhone 6s, с разрешением 12 МП. Его показатели в этом плане немного превосходят конкурентов на 13 МП, так как габарит пикселя составляет 1,22 мкм (а не 1,12 мкм).
Снимок на камеру iPhone 6S
1/2,8″
Наиболее популярный размер матрицы камеры для смартфонов с 16 МП. Такие камеры встречаются у Xiaomi Max, OnePlus 3, Xiaomi Mi5. Эти смартфоны отличаются тем, что размер пикселя составляет 1,12 мкм. Почти 90 % устройств с 16 МП имеют матрицу размера 1/2,8″.
Cнимок на камеру Xiaomi Mi5
1/2,6″
Матрица 1/2,6″ – это уже «покушение» на класс реальных (а не маркетинговых) камерафонов. Такой оборудованы LG G4 (16 МП) и ZTE Nubia Z9. Также подобные матрицы встречаются в Samsung Galaxy S6 и S6 Edge, Note 5, Asus ZenFone 3 Ultra и другие флагманские устройства. Подобная камера (на 12 МП) использована в Samsung Galaxy S7, S7 Edge, Note 7, но с размером 1/2,6.
Снимок на смартфон LG G4
1/2,4″
Размер матрицы 1/2,4″ — это уже явный признак камерафона. Sony в своих 21-мегапикскльных камерах (как у Xperia Z1, Z2), а также Meizu MX4, MX5, сохраняют приемлемый размер пикселей 1,12 мкм, в угоду разрешению. Также такая матрица встречается в Moto X Force и других смартфонах.
1/2,3″
Фото с Sony Xperia Z1 Compact
Это уже «гигант» в мире мобильных камер. Наличие такой матрицы подразумевает, что производитель позаботился о разумном сочетании мегапикселей и размеров матрицы. Она встречается в Sony Xperia Z1 Compact, Xperia Z2 (оба – 21 МП). Такое сочетание позволяет добиться отличной детализации без особого ущерба четкости.
Более крупные матрицы камер
К сожалению, в прошлом остались матрицы, обладающие более крупными размерами. Сейчас они применяются только в фотоаппаратах (зеркальных, беззеркальных и мыльницах). Производители стараются поднять светочувствительность транзисторов матриц, улучшить их, но не всегда это возможно. Так как фокусное расстояние напрямую связано с размерами матрицы – увеличение оной приведет к росту высоты камеры. В век, когда превышать толщину смартфона более 10 мм становится моветоном и грешным делом – увидеть матрицы большего размера нам не суждено.
mobcompany.info
Станьте первым комментатором