Нажмите "Enter" для пропуска содержимого

Разрешение глаза человека – Каково разрешение человеческого глаза? Ответы на удивительные вопросы!

Содержание

Каково разрешение человеческого глаза? Ответы на удивительные вопросы!

Правда ли, что наш организм вырабатывает «эндогенный спирт»? На какую высоту поднимаются надутые гелием шарики? Если алмазы состоят из углерода, то они горят? — всё, что вы хотели узнать, но всегда боялись спросить.

Каково разрешение человеческого глаза в мегапикселях? Достоверных и точных оценок дать нельзя из-за принципиально разного устройства сенсорного аппарата нашего зрения и цифровых камер. Однако эксперт в области фотографии, научный сотрудник американского Планетологического института Роджер Кларк провел приблизительные расчеты разрешающей способности глаза, получив внушительную цифру в 576 мегапикселей. Он же указал и светочувствительность сетчатки — около 800 ISO.

Как космические аппараты пролетают сквозь пояс астероидов и не сталкиваются с ними?

Фото

Выражение «пояс астероидов» достаточно условно: орбиты составляющих его тел расположены на очень широком пространстве с радиусом от 2,1 до 3,3 астрономических единиц. И хотя общее число астероидов диаметром более метра в нем оценивается в 800 триллионов, они оказываются распределены по объему в десятки триллионов триллионов кубических километров. Даже друг с другом крупные объекты пояса соударяются редко — тела в 10 км и более сталкиваются раз в 10 млн лет. Так что на деле баллистикам, наоборот, приходится прилагать большие усилия для того, чтобы траектории их миссий прошли поблизости от нужного астероида. Встретиться же с ними случайно почти невозможно.

Почему при включении WiFi точность позиционирования GPS увеличивается?

Современные программы навигации используют огромные базы данных с информацией по открытым WiFi-сетям. Входить в беспроводную сеть необязательно: мощность сигнала позволяет оценивать расстояние до известных точек доступа и уточнять текущие показания GPS.

Можно ли на Луне наблюдать фазы Земли?

Правда ли, что светодиодные лампы не привлекают насекомых? Привлекают, хотя и заметно меньше. Британские исследователи Гарет Джонс, Стивен Харрис и их коллеги проверили это, поставив эксперименты с использованием ламп накаливания, флуоресцентных светильников и светодиодов. После ночи экспонирования в ловушках, установленных у светодиодных ламп, скопилось примерно вчетверо меньше насекомых, чем у ламп с нитью накаливания, и вдвое меньше, чем у флуоресцентных. Причем для кусачих Culicoides, представителей гнуса, эта разница была еще более явной: 80% из их числа летели к лампе накаливания, и только 5% — к светодиодам.

Чем кошек так привлекает свет лазера?

Фото

Движения светового пятна от луча лазера «запускают» у кошек охотничье поведение, напоминая мельтешащие движения потенциальной жертвы, мелкого грызуна. Чем меньше у кошек возможностей удовлетворить эту тягу обычными способами, тем легче их возбуждают такие «посторонние» стимулы. Надо сказать, что сами кошки практически не различают оттенков красного: по словам Джона Брэдшоу, профессора ветеринарии из Бристольского университета, пятно для них выглядит скорее бело-желтым, ближе к естественной окраске грызунов. А вот крупные животные из семейства кошачьих на лазерное пятно практически не реагируют — видимо, на их жертв оно похоже недостаточно.

Всегда ли сутки длились 24 часа? Сегодня сутки продолжаются почти ровно 24 часа, потому что именно за это время Земля совершает полный оборот вокруг своей оси. В прошлом скорость вращения нашей планеты была выше, и сутки на ней длились меньше. Еще 1,3 млрд лет назад они продолжались каких-то 15 часов, так что за год успевало пройти почти 600 дней. К юрскому периоду (около 200 млн лет назад) сутки достигли 22,7 часа, что эквивалентно 386 дням в году, и только пару миллионов лет назад стали привычными для нас 24-часовыми.

В чем разница между белыми и коричневыми куриными яйцами?

Фото

Только в цвете: ни вкусом, ни составом, ни толщиной скорлупы белые и коричневые яйца не различаются. Как правило, куры с белыми перьями несут белые яйца, а бурые — коричневые, хотя это не всегда так. Более надежным индикатором может служить окраска пуха возле ушного отверстия птицы, хотя и это не всегда справедливо. Можно заметить, что окрашенные породы кур обычно крупнее белых, едят больше и несут более крупные яйца, что частично объясняет их более высокую стоимость. Что до особой их пользы или вкуса, то это просто миф, который с успехом используют, продавая коричневые яйца заметно дороже белых. Покупатели же уверены, что доплатили, получив более «здоровый» продукт, и все остаются довольны.

Что означают цветные прямоугольники на тюбиках зубной пасты? Рассказы о том, будто цвет прямоугольника указывает на качество или состав крема или пасты внутри тюбика, — это известная городская легенда. Такие контрастные цветовые метки наносятся при производстве и помогают датчикам автоматизированной упаковочной линии точнее позиционировать тюбики для разрезания, сворачивания или склеивания.

Как действуют смягчители для белья? Такие средства действительно делают ткань мягче — в их состав входят вещества, которые облегчают ее скольжение и повышают подвижность электростатических зарядов. Как правило, молекулы смягчителя содержат длинные «хвосты», сходящиеся на несущей заряд «головке». Положительно заряженными концами они крепко удерживаются на месте (как и волосы, ткани во влажном состоянии заряжены слегка отрицательно), «выставляя наружу» свои цепочки, в которых может накапливаться немного влаги. Вода проводит электричество и даже в незаметных на ощупь количествах позволяет зарядам быстро покидать ткань, не накапливаясь в таком количестве, чтобы «кусаться».

Статья «Вопросы и ответы» опубликована в журнале «Популярная механика» (№4, Апрель 2017).

www.popmech.ru

Часть 2. Сколько мегабит/с можно пропустить через зрительный нерв и какое разрешение у сетчатки? Немного теории

Другие публикации из этой серии

Часть 1. Unboxing VisuMax — фемто-лазера для коррекции зрения
Часть 3. Знакомьтесь — лазер по имени Amaris. Переезды и первое пробуждение VisuMax
Часть 4.1 Возвращаем зрение. От очков до эксимерного лазера
Часть 4.2 Возвращаем зрение. От очков до эксимерного лазера

Предыдущая публикация, посвященная технологиям лазерной коррекции зрения была встречена с интересом, которого я, если честно, даже не ожидал. Именно поэтому я решил продолжить статью в виде целого цикла, в рамках которого мы рассмотрим подробнее технологии лежащие в основе лазерной офтальмохирургии. Если вы ожидали увидеть непосредственно сами лазеры в этой статье — я вас немного разочарую. Я долго пытался обойти биологическую тематику, но в итоге понял, что не смогу рассказать о лазерной коррекции зрения, не раскрыв основы строения и функционирования нашего зрения.

Я постараюсь рассмотреть человеческое зрение через призму IT. Если кому-то не слишком интересно читать часть, посвященную биологическим аспектам зрения — ничего страшного. Просто пропустите разделы, начиная с оптической системы глаза, и сразу переходите к традиционному конкурсу от наших девушек. Однако, я все же рекомендовал бы ознакомиться с этим материалом, чтобы лучше понять следующую статью, в которой мы будем рассматривать LASIK, Femto-LASIK, ReLEx SMILE и другие методы лазерной офтальмохирургии.

Есть настроение разобраться, что именно говорят эти непонятные люди в белых халатах, задумчиво глядя на результаты вашего обследования? Вы хотите узнать немного нового об уникальном природном даре — зрении? Тогда добро пожаловать под habracut. Как обычно — много иллюстраций и трафика (≈5 MB).

Оглавление:


Зрение и IT

Оптическая система глаза

Почему мы плохо видим? Рефракционные нарушения

Бонусы

Вместо вступления



Глаз — сложнейший оптический инструмент, созданный природой. Человек во многом был всего лишь подражателем, создавая свои творения. Оптика проделала огромный путь как наука от опытов Ньютона с призмой до разработки уникальных лазеров, приборов ночного видения и других интереснейших вещей. Однако взглянем поближе на то, что во многом вдохновляло человечество на исследования и стало прообразом многих современных вещей. Человеческий глаз.

Сетчатка и зрительный нерв


Любой прибор способный регистрировать свет как правило имеет тот или иной вариант светочувствительной матрицы. Его биологическим аналогом является сетчатая оболочка глаза.

Нормализованные графики чувствительности человеческих клеток-колбочек различных видов (К, С, Д) и клеток-палочек (П) к различным частям спектра. Ось длин волны на данном графике логарифмическая.


Электронная микрофотография сетчатки. Палочки имеют серый цвет, а колбочки фиолетовый. На иллюстрации видно явное преобладание монохроматических палочек над колбочками

Например, сетчатка человеческого глаза имеет приблизительно 7-8 млн колбочек, отвечающих за цветное зрение, и около 120 млн палочек (черно-белое зрение). Не совсем будет корректно приравнивать колбочку/палочку к пикселю, но, по грубым оценкам, их количество приблизительно соответствует 250 мегапикселям для панорамы с обоих глаз. После возбуждения светочувствительных клеток сетчатки, сигнал нужно передать в наш биологический CPU/GPU. Эту функцию с успехом выполняет зрительный нерв. Узким местом, в которое упирается максимальная частота «кадров», передаваемая органом зрения, является —

латентность нервных синапсов (участок связи между нейронами, где импульс передается путем выброса и захвата химических веществ). По разным оценкам это примерно 100-150 Гц, что является пределом скорости передачи изображения в зрительную кору головного мозга. Количество нервных волокон в зрительном нерве составляет примерно 1 200 000. Если принять, что одно волокно за такт может передать 1 бит информации, то суммарная пропускная способность зрительного нерва примерно равна 1.2*106*150 бит=180 мегабит/с. Солидный поток. Нашему мозгу приходится обрабатывать суммарный поток в 360 мегабит/с только от зрительного анализатора. А ведь есть еще слух, обоняние, осязание, температурные и болевые рецепторы, чувство равновесия, проприоцептивное чувство (ощущение собственного тела в пространстве). Вся эта нагрузка, не считая кучи других функций, укладывается всего лишь в 25 Вт TDP.

Здесь, кстати, кроется ряд вопросов, лежащих в поле биоинформатики. Например, не совсем понятно, как ≈125*106 клеток-рецепторов могут передавать информацию в ≈1.2*106 проводящих нейронов. То есть еще до передачи в мозг происходит некая фильтрация и предобработка зрительной информации. Кстати, отсюда следует, что за «такт» сетчатка не в состоянии передать более 1.2 мегапикселя. Другое дело, что в результате обработки серии таких «снимков» в мозгу формируется куда более отчетливая картина происходящего. Еще одним интересным свойством человеческого зрения является тот факт, что мы всегда видим

прошлое. Задержка в проведении нервного импульса до центров обработки составляет по разным оценкам примерно 150-180 мс. Именно поэтому, кстати, в профессиональном спорте считается преждевременным стартом рывок спортсмена в промежуток от 0 до 100 мс. Считается, что человек не мог из-за физиологических ограничений успеть отреагировать так быстро. Надо сказать, что эти величины могут меняться в определенных пределах в зависимости от стресса, психоэмоционального состояния, уровня нейромедиаторов, но в целом картина достаточно стабильна.

Сравним с фотоаппаратом?


Светочувствительность может варироваться в широчайших пределах — от нормального зрения при освещенности в 25000 люкс (яркий полдень) до регистрации отдельных фотонов в кромешной темноте при максимальной адаптации. Динамический диапазон глаза также поражает на фоне традиционных фотоаппаратов — примерно 24 f-ступени! Для сравнения, максимальный динамический диапазон среди фотоматериалов имеет черно-белая пленка — около 10 f-ступеней. Цветная пленка имеет диапазон около 7, а средняя матрица современного фотоаппарата от 4 до 6. Таким образом, динамический диапазон глаза превышает средний фотоаппарат в 2(24-6)=262 144 раза.

Стоит заметить, что для такой адаптации требуется время. Время привыкания меньше при переходе в светлое помещение — всего несколько секунд. При переходе в темноту это время удлиняется до нескольких минут. Связано это в первую очередь с необходимостью синтеза разрушенного родопсина, зрительного белка, который непосредственно отвечает за возникновение зрительного возбуждения. Световой поток регулируется также как и в фотоаппаратах — диафрагмой. Эту функцию выполняет радужка, отверстие в которой и называют зрачком. Зная, что фокусное расстояние глаза равно примерно 22 мм, можно посчитать диафрагменное число для зрачка: для максимально расширенного зрачка 8мм — 22/8=2.75, для максимально узкого — 22/1.1=20.

По сути, наши глаза — широкоугольный объектив со свойственными ему искажениями на периферии. Однако при реконструкции трехмерной картинки в мозгу это компенсируется. Также мы не замечаем слепое пятно, несмотря на его вполне ощутимые угловые размеры (около 1.3º).

Оптическая система глаза


Для правильной фокусировки лучей нам важны не только размеры и форма элементов, но и их коэффициент светопреломления. Нужно понимать, что каждый светопроводящий элемент имеет свои, четко определенные коэффициенты. Кстати, именно это объясняет почему мы, в отличие от рыб, так плохо видим под водой — наши глаза эволюционировали как орган для обеспечения ясного зрения на суше. Все это происходит потому, что оптическая сила линзы зависит от показателя преломления среды.



Стеклянная линза значительно теряет в способности фокусировать свет при переносе в среду с другим IOR

Глаз представляет собой тонко сбалансированную оптическую систему. Малейшие изменения в соотношении ее элементов приводят к нарушению финального изображения на сетчатке. Представьте на секунду, что вы взяли и выставили в ручном режиме произвольный фокус на объективе фотоаппарата. Согласитесь, что хороший и четкий снимок подобным образом вы не получите. Рассмотрим поподробнее какой путь преодолевает свет на пути к сетчатке.

Оптическая система глаза. Указаны основные размеры и коэффициенты преломления сред

Роговица



Роговица при щелевой офтальмоскопии
Роговица с большим увеличением

Первый элемент встречающий натиск не слишком дружелюбной окружающей среды — роговица. Роговица относится к наружной оболочке глаза и выполняет защитную и светопреломляющую функцию. Именно эта оболочка глаза сталкивается с постоянным негативным воздействием пыли, соринок, солнечного света и многих других факторов. Эпителий роговицы постоянно обновляется, обеспечивая ее целостность и защитные свойства. Интересно, что роговица не имеет кровеносных сосудов в своей оптической части — это нарушило бы прозрачность. Питание и газообмен этих участков осуществляется путем диффузии за счет слезной жидкости снаружи и водянистой влаги передней камеры изнутри.

Передняя и задняя камеры



На фотографии видна передняя камера глаза, расположенная сразу под роговицей и заполненная особой жидкостью — водянистой влагой. Задняя камера располагается позади радужки и зрачка.

Радужка и зрачок


Каждый человек — обладатель уникального по своей красоте и палитре рисунка радужки. Для IT-специалиста радужка в первую очередь является важным элементом для биометрической идентификации. Для врача — это очень важный элемент, который подобно диафрагме регулирует поток поступающего света. Отверстие в радужной оболочке и называют зрачком. Немногие догадываются, что радужка имеет достаточно выраженный трехмерный рельеф, который можно проявить на снимках с правильно поставленным светом. Часто используются поляризационные фильтры для подавления бликов от роговицы.

Кстати, многие никогда не задумывались о том, что зависимость глубины резкости изображения и диаметра диафрагмы распространяется и на зрачок. В темноте глубина резкости резко снижается, так как увеличивается диафрагма-зрачок.

Больше красивых фотографий радужки.

Хрусталик



Хрусталик это уникальная биологическая линза, имеющая ряд крайне важных свойств. Одно из наиболее важных — способность к изменению своей кривизны под воздействием цилиарной мышцы. Этот процесс называется аккомодация и позволяет фокусироваться как на отдаленных, так и на очень близких предметах. Аккомодационные возможности оптической системы глаза молодого человека составляют ~14 диоптрий, с возрастом постепенно уменьшаются и к 60—65 годам практически утрачиваются. Кстати, именно благодаря хрусталику оптическая система глаза столь компактна по сравнению со, скажем, зеркальными фотоаппаратами.
Отблеск передней поверхности хрусталика при щелевой микроскопии

Стекловидное тело



Вопреки распространенному мнению, что глаз заполнен жидкостью, которая может вытечь при малейшем проколе, основной объем глаза занимает стекловидное тело. Эта субстанция скорее напоминает вязкий гель, чьи механические свойства определяет преимущественно гиалуроновая кислота. Основная функция стекловидного тела — поддержание стабильной формы глаза, придание ему необходимой упругости. Также стекловидное тело проводит через себя и преломляет свет.

Рефракционные нарушения


Все вышеперечисленные элементы относятся к рефракционной системе глаза. Именно поэтому, любые нарушения, связанные с ними называют рефракционными. Этот тип патологии интересен тем, что мы имеем возможность восстанавливать правильный ход лучей, воздействуя не на тот элемент, который был причиной заболевания. Например, использование очков как дополнительной линзы, корректирует близорукость, причиной которой стало увеличение центральной оптической оси глаза. Рассмотрим далее основные проблемы связанные со светопреломлением.
Хабражитель ansaril3 предложил добавить в статью физическое обоснование таких нарушений. К сожалению, мое медицинское образование не позволяет мне понять до конца смысл подобных вещей, но я оставлю ссылку для тех, кому интересно.
Полиномы Цернике и волновые аберрации:

Близорукость (миопия)


Бич многих специалистов в области IT. Перед тем как рассказывать о причинах данного заболевания, хочу ненадолго обратиться к искусству. Philip Barlow — талантливый южноафриканский художник, который смог в своих работах отразить мир глазами близорукого человека.

Еще немного работ этого автора
Причиной близорукости является увеличение размеров глазного яблока вдоль своей оптической оси:

Это заболевание чаще всего наиболее ярко проявляется в подростковом возрасте, в период резкого роста организма. Существуют наблюдения, которые связывают чрезмерное растяжение глаза с генетическими нарушениями в синтезе коллагена. Коллаген — структурный белок, имеющий важное значение в формировании соединительной ткани. При его чрезмерной эластичности и происходит непропорциональный рост глазного яблока. На этапе роста, для остановки дальнейшего роста близорукости могут применять склеро- и коллагенопластику. Суть этих методов заключается у увеличении прочности наружной оболочки глаза — склеры — за счет имплантации специального материала. Лечение данной патологии заключается в неоперативных методах (очки, контактные линзы) и оперативных (различные виды лазерной коррекции зрения).

Мы имеем возможность коррекции подобной проблемы по технологии Femto-LASIK, в ближайшие недели мы также сможем работать по технологии ReLEx SMILE. В работе используются последние поколения офтальмохирургических лазеров:
Для Femto-LASIK это Amaris 750S от компании Schwind (эксимерный лазер для самой коррекции) и VisuMax от Zeiss (фемто-лазер для выкраивания лоскута)
Для ReLEx SMILE это только VisuMax (технология подразумевает выполнения всех манипуляций только на нем, о чем подробнее в следующей статье)

Спазм аккомодации


Нужно различать истинную близорукость и так называемый спазм аккомодации, он же ложная близорукость. Я думаю, что в силу профессии, многие из нас проводят огромное количество времени, непрерывно глядя в монитор. Как мы уже говорили ранее, за аккомодацию отвечает цилиарная мышца, которая деформирует хрусталик необходимым образом. При постоянном зрительном напряжении, когда фокус зрения длительное время находится вблизи, эта мышца испытывает спазм и не может расслабиться. В результате глаз теряет способность нормально сфокусироваться на предметах вдали, но связано это с временными явлениями в плане аккомодации, а не с изменением формы глаза. В такой ситуации назначают специальные препараты которые вызывают временный паралич цилиарной мышцы, помогая ей расслабиться (тропикамид, атропин и другие). Нелишней будет зрительная гимнастика и соблюдение гигиены труда (освещенность рабочего места, перерывы и пр.)

Астигматизм



Эта патология часто сочетается с другими. Ее причиной является асимметричность кривизны роговицы или хрусталика. Следствием является разное лучепреломление относительно разных осей. В итоге человек может четко видеть, например, горизонтальные линии, а вертикальные будут размыты.
Немного дополнительной информации об астигматизме
Вид тестовой миры глазами человека, страдающего астигматизмом

Тестовая мира в исходном виде.


Лечение — применение специальных цилиндрических линз в очках или лазерная коррекция зрения, в процессе которой будет скорректирована и эта патология.


Дальнозоркость (гиперметропия)



Состояние обратное близорукости. Оптическая ось глаза короче, чем должны быть, в результате чего изображение фокусируется за сетчаткой.
Это заболевание часто путают с пресбиопией(возрастная дальнозоркость)
Лечение офтальмохирургическими лазерами практически аналогично с лечением близорукости.

Пресбиопия (возрастная дальнозоркость)


Особенность данного рефракционного нарушения в том, что человек с возрастом утрачивает способность к аккомодации. Хрусталик становится более жестким, цилиарной мышце все сложнее его деформировать. В итоге развивается то, что иногда в шутку называют «синдромом коротких рук» (Это у меня не зрение плохое, а руки короткие!). Хрусталик фиксируется в положении «фокус на бесконечность» и теряет способность к аккомодации на близкие предметы. В качестве лечения человек заменяет естественный механизм на ношение очков, когда необходимо рассмотреть что-то вблизи. Понятно, что речь о точной динамической калибровке оптической силы не идет. Существуют сложные варианты прогрессивных линз, ряд других методов, но это в любом случае не полноценная замена природного механизма.

Практика лазерной офтальмохирургии


Для того, чтобы немного подробнее раскрыть возможности хирургических лазеров для коррекции зрения, я попросил написать о них пару слов одного из наших офтальмохирургов, к.м.н., Бойко Александра Александровича. Я боюсь, что у него не будет времени отвечать от своего имени на Хабре ввиду его постоянной загруженности работой, но, по моей просьбе, он выкроил несколько минут, чтобы поделиться своими впечатлениями здесь:
Я всегда говорил, что врач прекращает быть профессионалом в тот миг, когда он перестает учиться чему-то новому. Ни для кого из вас не секрет, что медицина не стоит на месте, и каждый год появляются новые методики, позволяющие проводить более полноценное и качественное лечение. Когда я выбирал свою профессию врача-офтальмолога, мне было даже трудно себе представить себе те технологии, с которыми мне придется работать в дальнейшем. Я понял, что будущее уже наступило, когда проходил обучение в 2013 году по работе с нашими новыми офтальмологическими лазерами.
Это обучение по работе с фемтосекундным лазером Zeiss VisuMax в г. Йена в Германии и эксимерным лазером SCHWIND Amaris 500Е в г.Ашахенбург. С огромным удовольствием вспоминаю эти несколько недель непрерывной учебы, профессиональных преподавателей, которые рассказывали нам обо всех нюансах работы с этим поистине замечательным оборудованием.
Эргономика этих лазеров действительно продумана настолько, что машина становится естественным продолжением рук и мыслей хирурга, позволяя быстро и точно выполнять лечебные манипуляции. Эксимерный лазер Amaris позволяет выполнять коррекцию зрения в более широких рамках и с еще большей точностью, чем его предшественники. Коррекция близорукости до -15 диоптрий, дальнозоркости до +8D, а также сложных случаев астигматизма до ± 7 диоптрий цилиндрического компонента. А фемто-лазер VisuMax дает возможность выкраивать лоскут со сложной трехмерной структурой, которая рассчитывается индивидуально для каждого пациента. Это дало нам возможность расширить показания для операции у людей с достаточно тонкой роговицей.
Совместно с нашим коллегой, Иваном, мы постараемся подготовить в следующей статье максимально полный и подробный обзор все тех методик и методов, благодаря которым мы имеем замечательную возможность возвращать людям ясный взгляд на мир.
В статье использовались материалы:

  • www.cambridgeincolour.com
  • heck-aitomix.livejournal.com/67763.html с потрясающими снимками щелевой офтальмоскопии
  • Удивительные фотографии радужки от Сурена Манвеляна
  • Учебники по нормальной физиологии человека, офтальмологии.

Отдельное спасибо людям которые помогали в правке статьи и вносили свои ценные замечания:
  1. коллеге Sunchea, который помог привести материал в читаемую форму и дал много ценных советов
  2. Антону Хоренко из Братиславы за ценную редактуру
  3. vvzvlad
  4. ansaril3
  5. DIHALT
  6. И всем остальным, кто помогал в подготовке материала

Google
Очередной конкурс от наших девушек


Таня-дизайнер работает над задачей))

Наша женская половина коллектива учла пожелания по поводу усложнения заданий и придумала кое-что новое)) На этот раз в процесс включилось больше людей, особенно когда речь зашла о призах. Итак, в качестве приза для первых 10 человек, которые решат этот квест сертификат на полную экскурсию по клинике, с посещением серверной, непосредственным осмотром лазерных установок (в нерабочее время, конечно) и полным комплексом диагностики зрения для победителя. Надеюсь вам понравится. Я понимаю, что многие живут в других городах и не смогут приехать, но вы сможете подарить кому-нибудь сертификат (только нам сообщите) или посетить нас, если вдруг будете в наших краях (Краснодар, Ессентуки, Пермь).

Небольшой опрос


Возникла идея провести небольшой вебинар, в котором будут участвовать наш технический директор и один из лазерных хирургов. На нем все желающие смогут задать интересующие вопросы, которые остались нераскрытыми в цикле статей. Соответственно хочется узнать у хабрасообщества мнение по этому поводу. Также было бы уточнить какую платформу (бесплатную) лучше и удобнее для большинства использовать для проведения вебинара.

UPD. Объявление победителей
Я приношу извинения, что мы затянули с победителями, но не все люди приславшие письмо назвали нам свои ники на хабрахабре. Публиковать их e-mail было бы неправильно. Как только получим их все — вывесим список. В качестве общей оценки активности хабрасообщества могу сказать, что первые 10 ответов были уже через час после публикации. Счетчик показывает приблизительно 300 переходов по финальной ссылке квеста. Около 40% решивших квест сумели также найти пасхалку.
Так совпало, что одним из первых разгадавших стал vvzvlad, который был недалеко от нас и смог попасть в нашу Краснодарскую клинику. Мы честно выполнили свою часть, совместив рассказ о диагностической аппаратуре с проведением самого обследования. Ну и конечно не могли не дать непосредственно потрогать фемто-лазер VisuMax, который я описывал в предыдущей статье.

habr.com

BSP Security — Тестирование разрешения человеческого глаза

Существует много оценок разрешающей способности человеческого глаза, однако все они колеблются в пределах 5, 6 или 7 мегапикселей.

Однако, насколько нам известно, еще никто точно это не тестировал… до сих пор.

В этом отчете мы поделимся результатами тестирования различных разрешений IP-камер по сравнению с человеческим глазом.

Итоговые результаты.
Вот итоговая таблица наших тестов, которые будут объяснены далее.
2016-08-15_16-24-27

Основа тестов

В качестве основы наших тестов мы использовали таблицу Снеллена.
Предполагается, что человеческий глаз имеет остроту зрения 20/20, если он может прочитать восьмую строку таблицы с расстояния 20 футов (примерно 6 метров).

Наша цель — найти с каким разрешением камера сможет «прочитать» / «увидеть» одну и ту же строку на одной и той же таблице так же хорошо, как и человеческий глаз.

Тесты

Мы взяли набор IP-камер различного разрешения (720p, 1080p, 5MP и 10MP) и установили угол обзора 60 градусов. Люди имеют гораздо более широкое периферийное зрение, так что в нашем случае угол обзора в 60 градусов представляет собой «взгляд прямо».

Подобно человеку мы разместили камеры в 20 футах (примерно 6 метров) от таблицы Снеллена, чтобы выяснить когда и какая камера сможет сравниться или превзойти человеческий глаз.

34123

Результаты

Мы начали с хорошо освещенной комнаты (освещенность 160 люксов). Снимок ниже показывает общий вид места.

60 градусов — 160 люксов

FOV

Первая камера с разрешением 720p смогла распознать только 4 строку таблицы, поэтому «острота зрения» ей была поставлена 20/50

Камера с разрешением 1080p смогла прочитать всего на одну строку больше, и ей
была поставлена «острота» 20/40

Перейдя на разрешение 5MP мы продвинулись еще на одну строку и «острота» была
оценена как 20/30, хотя кое-кто считал, что и следующая строчка тоже различима
и можно поставить 20/25.

И, наконец, камера с разрешением 10MP обеспечила возможность прочитать 8-ю строку,
что дает ей остроту зрения человеческого глаза 20/20.

Таким образом в идеале даже при хорошей освещенности 10МP камера может соответствовать и даже немного превосходить человеческий глаз.

3 люкса

Снизив освещенность комнаты до 3-х люксов мы повторили наши тесты. Обычно, при
такой освещенности человек с остротой зрения 20/20 сможет различить 6-ю строку
(EDFCZP), 20/30, две следующие строки становятся неразличимыми из-за снижения
освещенности.

Камера с разрешением 720p смогла распознать только три строки (острота 20/70)
из-за сильных шумов и затемненного изображения.

Камера с разрешением 1080p показала себя не лучше, шумов и артефактов ниже
третьей строки очень много, поэтому буквы выглядят даже менее различимыми, чем
у камеры на 720p.

С разрешением 5MP мы смогли распознать 4 строки (20/50). Заметьте, что некоторые
буквы на 5-й строке тоже видны, однако шумы и артефакты не дают полностью
распознать строку.


Наконец, камера с разрешением 10MP смогла продвинуться до 5-й строки, 20/40. И
опять некоторые буквы на 6-й строке вполне различимы, но строка в целом — нет.

1 люкс

Для нашего финального теста мы снизили освещенность до одного люкса (очень темная
комната). На этом этапе только камеры с разрешением 720p и 1080p смогли что-то
различить, в то время, как человеческий глаз при такой освещенности способен
различить 5 строку (PECFD) с оценкой 20/40.

Камера на 720p смогла распознать две строки с «остротой» 20/100. Прочие строчки
были неразличимы.

С разрешением 1080p мы смогли распознать и третью строку. Оценка 20/70.

Камеры на 5MP и 10MP показывали полную черноту, поэтому мы признали их слепыми.

234234
Иcточник: https://ipvm.com/
Переведена: BSP Security

bspsecurity.ru

Какое разрешение у глаза человека в пикселях?

Действительно, разрешение в нашем зрительном аппарате больше на порядок, нежели в цифровых камерах. Сопоставляя пиксели и разрешительные свойства наших колбочек с палочками, можно вычислить, что в правом и левом глазу будет по 120-140 мегапикселей. Однако в отличии от фотокамер в органе зрения разрешение распределено неравномерно. Оно выше в центре глаза (до 200 тысяч рецепторов на 1 миллиметр), чем на периферии. Напомним, что пиксель состоит из 3 субпикселей. Из них каждый воспринимает сугубо один цвет: синий, красный, зеленый. Пиксель — это их сочетание в определенных пропорциях. Таким образом, разрешение фотоаппаратов равняется примерно 1 мегапикселю, в современных цифровых камерах эти параметры варьируются от 5 до 20 мегапикселей. А вот в матрице нашего зрительного аппарата, то есть в его сетчатке, полноценных пикселей как таковых нет. Есть множество субпикселей, разных по принципу работы и чувствительности, распределенных неравномерно. Такими субпикселями выступают фоторецепторы — всем нам известные колбочки с палочками. Если уровень освещения хороший, то последние воспринимают синюю область цветового спектра, колбочки — сине-фиолетовую, желто-зеленую, красно-желтую.

В целом сетчатая оболочка человеческого глаза имеет до 5 миллионов цветных рецепторов. Другими словами, эквивалентна 5 мегапикселям. Помимо цветных, в нашем зрительном аппарате есть и монохромные рецепторы. Их функция — поддержка контрастности окружающего мира, его четкости. Информацию от двух наших глаз собирает мозг. Он и управляет зрительными процессами. Поэтому именно зрение, его нормальное функционирование медики называют самой сложной системой человеческого организма, сродни инженерной конструкции, главный в которой — головной мозг. Его травмы и нарушение нервной проводимости в большинстве случав приводят к ухудшению зрения, падению его остроты и соответственно разрешительной способности. Это может происходить сразу после травм и даже через несколько месяцев после них.

ozrenii.com

Гонка разрешений экранов уже не имеет смысла

Флагманские смартфоны и современные Ultra HD-телевизоры уже превзошли возможности человеческого зрения. Гонка разрешений, которая только набирает обороты, уже не имеет никакого смысла. На этой точке зрения сходится большинство отраслевых экспертов.

«В новых 4К-телевизорах обычный человек не сможет увидеть разницу [по сравнению с Full HD]», — сказал Раймонд Сонериа (Raymond Soneira), глава фирмы DisplayMate, занимающейся тестированием экранов. В 2010 году Стив Джобс представил iPhone 4 с экраном Retina. Данный дисплей был не просто очень хорошим, он обладал такой плотностью пикселей, что человеческий глаз не мог их различить и, соответственно, дальнейшее увеличение данного параметра стало бессмысленным.

В новых смартфонах Apple данный показатель был сохранен — 326 ppi, однако в новых Android-флагманах вроде HTC One и LG G2 плотность пикселей уже превысила показатель в 400 ppi. Что касается телевизоров, то сейчас активно продвигается новый формат 4К. Он предлагает в 4 раза большее разрешение, чем «обычные» Full HD-телевизоры. При этом Full HD на том расстоянии, на котором обычно зрители смотрят телевизор, можно считать чем-то вроде Retina — человеческий глаз уже не различает отдельные пиксели. Другими словами, увидеть разницу между 4К и Full HD можно только с близкого расстояния, при обычном использовании разница будет просто не видна.

scaredpoet.com

«Существует некоторый предел плотности, за которым вы не сможете сделать изображение лучше из-за ограниченности вашего глаза», — сказал Дон Худ (Don Hood), профессор офтальмологии в Колумбийском университете. Если вытянуть руку перед собой и взглянуть на ноготь указательного пальца, то обычный человек не сможет различить 120 чередующихся черно-белых полос на ногте. Попытка различить пиксели на экране смартфона с разрешением 1136×640 или телевизора с 1920 x 1080 будет аналогичной задачей. Это физический предел человеческого зрения.

digitaltrends.com

На практике люди не смогли бы различить отдельные пиксели, даже если бы их размер был в два раза больше. Уже сейчас можно заметить интересную тенденцию — люди, покупающие дорогие 4К-телевизоры, ставят диван и кресла поближе к экрану, чтобы разница с предыдущим телевизором «бросалась в глаза», ведь на том же расстоянии, что и раньше, разница будет незаметна.

appliancesonlineblog.com

Таким образом, увеличение разрешения экрана — это скорее маркетинг, чем реально нужная пользователю вещь. Причем, как показывает практика, за 4К в телевизорах и 2К на смартфонах люди действительно готовы переплачивать, причем серьезно. Более того, они готовы даже терпеть такие серьезные недостатки, как отсутствие подходящего контента и серьезное увеличение энергопотребления.

phonearena.com

На самом же деле действительно улучшить качество изображение может работа над технологиями цветопередачи и обработки видео-сигнала. Если же продолжать увеличивать разрешение, человеку, чтобы он мог увидеть разницу, придется улучшать глаза.  

Если вы заметили ошибку — выделите ее мышью и нажмите CTRL+ENTER.

3dnews.ru

Сколько мегапикселей составляет глаз человека?

Человеческая сетчатка имеет примерно пять миллионов цветных рецепторов, то есть эквивалентна 5 мегапикселям. Однако, имеется еще 100 миллионов монохромных рецепторов, играющие важную роль в четкости и контрастности изображения, воспринимаемого мозгом. Но даже 105 мегапикселей не отражает реального «разрешения» сетчатки глаза человека. Ведь наш глаз — это не фотокамера. Мы имеем два глаза, постоянно воспринимающих окружающую информацию, которая «собирается мозгом» в большое панорамное изображение имеющее разрешение, эквивалентное 576 мегапикселям. <img src=»//otvet.imgsmail.ru/download/8794c1d58bc760b507e7f07c6f210c20_i-218.jpg» >

Нельзя сравнивать аналоговое изображение(глаз) и цифровое(фотоаппарат). Вот вам пример. Изображение полученное путём пропускания света через цветную плёнку (проектор, это и есть аналаговое изображение) можно увеличивать хоть в 1000 раз без потери качества (ну если в ваккуме). А цифровое изображение ограничивает количество точек на дюйме.

Зрение человека работает совсем по другим принципам, поэтому сравнивать его с ПЗС матрицей не имеет никакого смысла. Можно порекомендовать почитать умные книги по физиологии зрения, но думаю, что Вы этому совету никогда не последуете. Поэтому довольствуйтесь этими ответами.

У нас аналоговое зрение. НЕТУ ВАААЩЕ никаких мегапикселей. Колличество света, цветность и всё. При хорошем освещении — до хрена (если так можно выразиться) мегапикселей, в темной комнате — ни фига. Из глаз информация идёт в мозг. И не оцифроввывается.

576 мегапикселей

в панораме оба глаза дают 576 мегапикселей

ПАУКИ. Пауки — это не насекомые. В отличии от насекомых у паука восемь ног (у насекомых — шесть ног) , восемь глаз (у насекомых — всего два глаза) , и у паука нет отдельно головы и груди, а есть слитая вместе головогрудь. В районе головогруди у паука, как и у любого иного живого существа, находятся глаза, их размер зависит от разновидности паука. Чаще они образуют два поперечных ряда, но бывают расположены и иначе. Глаз пауков в среднем восемь. В ряде случаев число глаз паука сокращается до шести, четырех или двух. Среди пещерных пауков есть слепые. Пауки. Фото галерея. <a href=»/» rel=»nofollow» title=»21706095:##:showthread.php?t=131″>[ссылка заблокирована по решению администрации проекта]</a> О пауках — всё ! <a rel=»nofollow» href=»http://www.zoo-spider.ru/zrenie.php?idg=31″ target=»_blank»>http://www.zoo-spider.ru/zrenie.php?idg=31</a> Система чувств у пауков. <a rel=»nofollow» href=»http://www.spidersilk.ru/n_feel.html» target=»_blank»>http://www.spidersilk.ru/n_feel.html</a>

Человечески глаза составляют 576 мегапикселя

Мегапиксели, цифра, аналог… Какой аналог если колбочки и палочки? А ещё здесь не упомянули про «желтое пятно» имеющее на порядок большее разрешение чем остальная сетчатка. Эти 105Мп делить как? 100 в желтом пятне и 5 в остальной сетчатке?

touch.otvet.mail.ru

Разрешение человеческого глаза

Физика > Разрешение человеческого глаза

 

Читайте, какое разрешение у глаза человека: работа линзы глаза, статическая и динамическая контрастность, диапазон поля зрения глаза, особенности восприятия.

Глаз – орган чувств, обеспечивающий умение видеть. Способен отличить примерно 10 миллионов цветов.

Задача обучения

  • Охарактеризовать поле зрения и цветовую чувствительность глаза.

Основные пункты

  • Статическая контрастность глаза составляет 100 : 1, а коэффициент динамической контрастности – 1000000 : 1.
  • В глазе есть линза, принцип работы которой совпадает с оптическими приборами.
  • Примерное поле человеческого зрения: 95° от носа, 75° вниз, 60° к носу и 60° вверх, благодаря чему мы обладаем практически 180° горизонтальным видением спереди.

Термины

  • Поле зрения – угловая степень того, что можно увидеть при помощи глаз или оптических приборов.
  • Коэффициент статической контрастности – соотношение яркости наиболее яркого и темного цветов, которые система способна обработать одновременно.
  • Динамическая контрастность – соотношение наиболее яркого и темного цветов, которые система способна обработать со временем.

Глаз – орган, реагирующий на свет. Он обеспечивает человеческую способность видеть. За многие процессы восприятия отвечают стержневые и конусные клетки сетчатки. Глазу удается отличить 10 миллионов цветов.

Структура глаза и крупный план сетчатки

Важно понимать, какое разрешение у глаза человека. Статическая контрастность глаза составляет 100 : 1. При движении он регулирует свои механизмы химически и геометрические через управление диафрагмой. Первая темная адаптация осуществляется спустя 4 секунды глубокой и непрерывной темноты. При полной адаптации подключается химическая корректировка, на что уходит 30 минут. Отсюда появляется возможность динамического коэффициента контрастности – 1000000 : 1. Этот процесс нелинейный и многогранный, поэтому если свет прервет его, то все начнется сначала. Полная адаптация основывается на хорошем кровотоке.

В глазе присутствует линза, которая по своему строению и функциональности напоминает те, что используют в оптических приборах. Зрачок играет роль апертуры. Диафрагма останавливает апертуру. Из-за преломления в роговице эффективная апертура отличается от диаметра физического зрачка. Входной зрачок в диаметре занимает 4 мм, хотя может достигать 2 мм при яркой освещенности и 8 мм в темноте. Последний показатель медленно сокращается при старении. У пожилых людей диапазон – 5-6 мм.

Приблизительное поле зрения глаза: 95° от носа, 75° вниз, 60° к носу и 60° вверх, что обеспечивает практически 180-градусное горизонтальное видение спереди. При вращении глазного яблока на 90°, горизонтальное поле зрения достигает 170°. Примерно 12-15° во времени и на 1.5° ниже горизонтального – зрительный нерв или слепое пятно, охватывающее 7.5° и ширину 5.5°.


v-kosmose.com

Станьте первым комментатором

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *