Нажмите "Enter" для пропуска содержимого

Строение объектива фотоаппарата: Урок 2. Устройство и принцип работы объектива

Содержание

Урок 2. Устройство и принцип работы объектива

Объектив — это один из наиболее важных элементов фотоаппарата, от которого зависит качество получаемого снимка. Объектив формирует изображение и проецирует его на плоскость фотопленки или матрицы. В литературе Вы сможете встретить термин «рисует».

Характер «рисунка» у каждого объектива индивидуальный. Именно этим объясняется то, что фотографы предпочитают иметь не один универсальный объектив, а несколько узкоспециализированных.

Для создания качественных фотоснимков Вам совершенно не обязательно быть квалифицированным экспертом в области прикладной оптики. Но необходимо иметь хотя бы базовые представления о том, как работает объектив.

 

Широкий выбор объективов доступный для цифровой фототехники определяет разнообразие возможностей для реализации ваших творческих планов. С момента создания первых объективов для пленочных фотокамер принцип работы объектива практически остался без изменения.

 

Конструкция объектива

Любой объектив является сложным оптическим прибором, который конструктивно состоит из: системы линз, сферических зеркал, металлической оправы, диафрагмы и управляющих элементов.

 

Передняя линза объектива служит для сбора световых лучей, идущих от объекта съемки. Т.к. эта линза в объективе ничем не защищена от внешних факторов, то ее желательно защитить с помощью UV-фильтра. Это позволит предотвратить попадание на нее пыли, грязи и брызг, защитит от механических повреждений.

Внутри объектива располагаются блоки линз, которые отвечают за формирование изображения. Этот блок может состоять из нескольких линз или иметь сложную структуру.

Помимо блока линз объектив содержит ряд вспомогательных узлов, которые обеспечивают наводку на резкость, оптическую стабилизацию, управление диафрагмой. В зум-объективах (объективы с переменным фокусным расстоянием) дополнительно есть элемент, отвечающий за изменение фокусного расстояния.

Задняя линза в объективе проецирует изображение на светочувствительный элемент — матрицу.

Фотографы, при приобретении объектива, в первую очередь оценивают состояние задней линзы, т.к. от ее качества сильно зависит то, какую картинку будет выдавать нам объектив.

Корпус объектива служит для размещения всех элементов и их надежного крепления. Для качественной работы объектива очень важно чтобы была соблюдена высокая точность взаимного расположения линз. Корпус так же выполняет защитную роль, оберегая оптику от механических воздействий, пыли и влаги.

Большая часть объективов состоит из нескольких частей. В основном металлическом стакане располагаются все оптические элементы и механизм диафрагмы и переходного стакана, служащего для крепления к камере объектива и осевого перемещения основного стакана (внутренний стакан). Конструкция объектива предполагает возможность ручного или автоматического изменения диафрагмы.

В конструкцию объектива также входит фокусировочное кольцо, которое используется для ручной наводки на резкость. Вращая это кольцо, Вы сможете изменить резкость (сфокусироваться на объекте переднего плана или заднего). Если в фотокамере включен режим автофокусировки, то при нажатии на кнопку спуска затвора, Вы отдаете команду и камера с объективом произведут фокусировку по центральному участку кадра. Фиксирование фокуса производится с помощью нажатия на кнопку спуска затвора на половину ее хода. В современных объективах, которые позиционируются для профессионального использования, применяется ультразвуковой привод фокусировки. Двигатель размещается непосредственно в самом объективе. Такие объективы отличаются более быстрой и менее шумной фокусировкой по сравнению с «отверточными» объективами.

 

 

 

 

 

Фокусное расстояние

Фокусное расстояние — основная характеристика любой оптической системы.

Фокусное расстояние — расстояние от оптического центра объектива до плоскости матрицы. Это упрощенное определение наиболее понятно для начинающих фотолюбителей.

Где: F — фокус; f — фокусное расстояние

 

Фокусное расстояние измеряется в миллиметрах.

На основании соотношения между фокусным расстоянием и диагональю кадра, все объективы можно разделить на три основные группы:

— нормальные — объективы у которых фокусное расстояние равно диагонали кадра;

— длиннофокусные (телевики) — объективы у которых фокусное расстояние превышает диагональ кадра;

— короткофокусные (широкоугольники) — объективы у которых фокусное расстояние меньше диагонали кадра.

От выбранного фокусного расстояния зависит угол изображения, а так же масштаб и перспектива снимка. Ниже в таблице приведены наиболее часто используемые значения расстояний и соответствующие им углы изображения (значения взяты для полнокадровых фотокамер с размером сенсора 36 х 24 мм).

 

 

Фокусное расстояние, мм Угол изображения,
о
20 95
24  84
28  75
35  63
50  47
85  29
105  23
135  18
200  12
300  8

 

 

Диафрагма

Диафрагма служит для изменения интенсивности светового потока, который проходит через объектив. В объективе диафрагма представляет собой набор зачерненных непрозрачных подвижных лепестков. Лепестки диафрагмы по-центру формируют многоугольное отверстие, через которое проходят световые лучи. Диаметр отверстия может регулироваться в широком диапазоне.

С помощью изменения диафрагмы фотограф может управлять экспозицией кадра и глубиной его резкости.

 

Мерой светопропускающей способности объектива является число диафрагмы — отношение между фокусным расстоянием объектива и диаметром отверстия диафрагмы.

Например. Возьмем объектив с фокусным расстоянием 200 мм и диаметром отверстия диафрагмы в 50 мм. Их отношение будет равно 200/50 = 4. Диафрагменное число принято записывать как f/4.

Стоит заметить, что если вы возьмете широкоугольный объектив и поставите значение диафрагмы 8, а потом возьмете зум-объектив с фокусными расстояниями 24-70 и на нем тоже поставите значение диафрагмы 8, то оба объектива на матрицу вашей фотокамеры передадут одинаковое количество света.

Диафрагменные числа составляют одноименный ряд и являются стандартными значениями для любых объективов.

f/1   f/1.4   f/2   f/2.8   f/4   f/5.6   f/8   f/11   f/16   f/22  f/32   f/45   f/64.

В современных фотокамерах используется усеченный диафрагменный ряд в который введены промежуточные значения диафрагм.

Пример диафрагменного ряда для фотокамеры Sony A99 с объективом Minolta AF 24 f/2.8

f/2.8   f/3.2   f/3.5   f/4   f/4.5   f/5   f/5.6   f/6.3   f/7.1   f/8   f/9   f/10   f/11   f/13   f/14   f/16   f/18   f/20   f/22

Аналогичную картину с диафрагменным рядом можно наблюдать и у других производителей фототехники.

Следуем помнить, что чем меньшее значение Вы берете из представленного диафрагменного ряда, тем сильнее Вы открываете отверстие через которое свет попадает на матрицу фотокамеры. Минимальное значение, которое доступно для вашего объектива, принято считать его светосилой. У профессиональных объективов на всем диапазоне фокусных расстояний светосила постоянная. Как правило, на такие объективы наносится значение их светосилы. 

Пример. Sony Distagon FE 35mm F1.4 ZA.   В этом объективе 1.4 — это его светосила.

 

Для осуществления кадрирования и экспозамера в современных объективах применяется «прыгающая» диафрагма. Принцип ее работы заключается в том, что вне зависимости от того какое значение в настройках фотокамеры Вы поставили, диафрагма всегда остается полностью открытой. Только в момент спуска затвора ее значение скачком меняется то того, которое было в настройках выставлено. После того как снимок сделан, диафрагма так же скачком меняет свое значение до полностью открытого.

Что бы оценить глубину резкости будущего снимка, фотограф на фотокамере может нажать кнопку «Репетир диафрагмы». Пока будет зажата эта кнопка диафрагма будет закрыта до выбранного в настройках значения.

 

Байонет

Объектив крепится к фотоаппарату с помощью байонетного соединения. Такой способ крепления объектива по сравнению с резьбовым упрощает саму операцию, экономит время и относительно фотокамеры объектив располагается более четко, что необходимо для бесперебойной работы механического привода фокусировки и надежной передачи сигналов на контактной площадке. Каждый производитель фотокамер в своей продукции использует свой уникальный тип байонета. С появлением беззеркальных фотокамер на рынке фототехники массово появились переходники, которые позволяют устанавливать оптику других фирм.

В качестве примера можно привести линейку беззеркальных фотокамер Sony A7, A7R, A7S к которой сейчас выпущено большое количество переходников, позволяющих устанавливать практически любые объективы.  

 

Фокусировка

Все современные объективы позволяют проводить фокусировку в ручном или автоматическом режимах. Если в настройке фотоаппарата выбран автоматический режим фокусировки, то при полунажатии кнопки спуска затвора, камера начнет фокусироваться на выбранном объекте.

Для ручной фокусировки в камере необходимо включить соответствующий режим, после чего с помощью фокусировочного кольца, которое расположено на корпусе объектива, Вы наводите резкость на выбранном объекте. 

Стоит отметить, что не во всех случаях возможно провести фокусировку в автоматическом режиме. Особенно это актуально, когда используются бюджетные варианты объективов в сложных съемочных условиях. В качестве примера сложных условий для фокусировки можно привести фотосъемку фотомодели в контровом свете (заходящее солнце).

 

Оптический стабилизатор

На рынке фототехники есть объективы, которые снабжены оптическим стабилизатором. Оптический стабилизатор позволяет вам при фотосъемке уменьшать влияние тремора рук на качество снимка. Польза от этого устройства очевидна — вы сможете фотографировать без эффекта «шевеленка» при большем недостатке света. 

Специалисты советуют отключать стабилизатор при съемке со штатива (монопода), а так же при съемке на выдержках короче 1/500 секунды.

Использование оптического стабилизатора увеличивает скорость разряда аккумулятора вашей фотокамеры. 

Устройство объектива: основные элементы объектива фотоаппарата

Свет попадает в фотокамеру через объектив. Каким образом с помощью объектива можно получить качественное и резкое изображение? Зная устройство объектива, можно дать полноценный ответ на этот вопрос.

Оптическая линза

В лицевой части объектива находится оптическая линза – один из ведущих элементов, входящих в устройство объектива. С помощью этой линзы свет направляется в камеру и попадает на матрицу. Внутри объектива находятся другие оптические линзы, которые отвечают за дальнейшее формирование изображения. Их также называют «оптическими элементами»:

 

Резьба для фильтров

В устройство объектива также входит резьба для фильтра, которая расположена вокруг внешней линзы. На эту резьбу можно прикручивать различные фильтры и другие аксессуары для объективов. На каждом объективе есть пометка о диаметре этой резьбы, чтобы фотограф мог подобрать фильтр по размеру.

 

Фокусировочное кольцо

На каждом объективе есть фокусировочное кольцо. Этот элемент, входящий в устройство объектива, можно использовать для ручной наводки объектива на резкость: вращая кольцо, фотограф может определить, какая часть сцены будет резкой – передний или задний план. В объективах с функцией автофокуса это кольцо вращается автоматически благодаря специальному мотору, когда фотограф прижимает кнопку спуска наполовину. Обычно на таких кольцах находятся пометки о расстоянии до объекта, на который фокусируется фотограф.

 

Кольцо трансфокатора

В устройство объектива с переменным фокусным расстоянием (возможностью приближать и отдалять объект) входит специальное кольцо для изменения фокусного расстояния, которое также называют кольцом трансфокатора. Возможность такого объектива приблизить или отдалить объект ограничивается фокусным расстоянием. Оно обозначается отрезком между минимальным и максимальным фокусным расстоянием объектива, например, 70-300 мм. Этот отрезок называется рабочим отрезком объектива.

 

Кольцо диафрагмы

На старых объективах (например, советских), также есть кольцо диафрагмы, с помощью которого можно установить значение диафрагмы. В устройство объектива современного производства оно не входит – диафрагма контролируется только через корпус камеры.

 

Диафрагма

Диафрагма – регулируемое по величине отверстие, которое входит в устройство объектива. С помощью этого отверстия регулируется количество света, попадающего на матрицу. Размер отверстия определяется значением F. Большое отверстие обозначается маленьким значением (например, f2.8). Маленькое отверстие обозначается большим значением (например, f16). Чем больше отверстие диафрагмы, тем сильнее размыт фон.

 

Байонет

Байонет – металлическая оправа, входящая в устройство объектива. Байонет – это место крепления объектива к камере. Размер и вид крепления зависит от типа камеры, к которой крепится объектив. Разные производители используют различные формы байонетов. Объектив, в свою очередь, устанавливается на кольцо объектива (или байонет) самой камеры. Чтобы установить объектив, нужно соединить его в месте, где совпадают точки на объективе и камере (красная или белая для разных объективов). После небольшого поворота объектив «встанет» на камеру. На байонете также находятся контакты, через которые камера передает объективу параметры съемки.

Как устроен объектив фотоаппарата

Объектив является неотъемлемой частью любого фотоаппарата, без него не получится сделать хороший снимок. Именно об объективах и его простейшем устройстве пойдет речь в этой статье.

Более подробная информация об объективах, об их видах и назначениях читайте в этом разделе Объективы фотокамер.

Как устроен объектив

Объектив современной фотокамеры состоит из нескольких линз, объединенных в оптические системы (например, оптическая схема Тессар). Число линз в объективах самых простых фотокамер — от одной до трех, а в современных дорогих фотоаппаратах их бывает до десяти или даже восемнадцати.

Оптических систем в объективе может быть от двух до пяти. Практически все оптические схемы устроены и работают одинаково – они фокусируют проходящие через линзы лучи света на светочувствительной матрице.

Только от объектива зависит качество изображения на снимке, будет ли фотография резкой, не исказятся ли на снимке формы и линии, хорошо ли она передаст цвета — все это зависит от свойств объектива, поэтому объектив и является одним из самых важных элементов современной фотокамеры.

Линзы объектива

Линзы объектива делают из специальных сортов оптического стекла или оптической пластмассы.  Создание линз одно из самых дорогостоящих операций создания фотокамеры. В сравнении стеклянных и пластмассовых линз стоит отметить, то пластмассовые линзы дешевле и легче. В настоящее время большинство объективов недорогих любительских компактных камер изготавливается из пластмассы. Но, такие объективы подвержены царапинам и не так долговечны, примерно через два-три года они мутнеют, и качество фотографий оставляет желать лучшего. Оптика камер подороже изготавливается из оптического стекла.

В настоящее время большинство объективов компактных фотокамер изготавливается из пластмассы.

Между собой линзы объектива склеивают или соединяют при помощи очень точно рассчитанных металлических оправ. Склейку объективов можно встретить намного чаще, нежели металлические оправы.

Оправа объектива

Не менее сложная деталь объектива, это его оправа , так как она должна предельно точно обеспечивать правильное положение линз. Кроме того, в оправу монтируется множество важных устройств, таких как,  диафрагма, фокусирующий механизм, затвор. С внешней стороны оправы располагаются кольца для управления фокусировкой и диафрагмой.

Объективы бывают встроенными в корпус фотоаппарата и съемными. На следующем рисунке показан съемный объектив. Такие объективы предназначены для зеркальных фотокамер и крепятся к корпусу при помощи резьбового или байонетного соединения. Объективы на резьбе просто ввинчиваются в оправу объектива. Этот вид крепления надежен, но в настоящее время ушел в прошлое. Его заметил байонет — специальный поворотный замок. На следующем рисунке показано изображение фотокамеры, снабженной байонетным замком. Объектив с байонетным замком устанавливают, совместив метки корпуса камеры и объектива и повернув по часовой стрелке до щелчка. Выгода такого соединения — в его простоте, в возможности смены объектива одним движением.

Примечание: Оптическая схема Тессар — была разработана доктором Паулем Рудольфом, и запатентована 25 апреля 1902 фирмой«Carl Zeiss». Имеет конструкцию из четырех элементов в трёх группах. Третья и четвертая линза склеены. Лепестки диафрагмы размещаются перед задним компонентом.

Устройство фотоаппарата, строение и принцип действия.


Человека всегда тянуло к прекрасному, увиденной красоте человек пытался придать форму. В поэзии это была форма слова, в музыке красота имела гармоническую звуковую основу, в живописи формы прекрасного передавались красками и цветом. Единственное, что не мог человек, это запечатлеть мгновение. Например, поймать разбивающуюся каплю воды или рассекающую грозовое небо молнию. С появлением в истории фотоаппарата и развитием фотографии это стало возможным. История фотографии знает множественные попытки изобретения фотографического процесса до создания первой фотографии и берет начало в далеком прошлом, когда математики изучая оптику преломления света обнаруживали, что изображение переворачивается, если пропустить его в темную комнату через небольшой отверстие.

В 1604 г. немецкий астроном Иоганн Кеплер установил математические законы отражения света в зеркалах, которые в последствии залегли в основу теории линз по которым другой итальянский физик Галилео Галилей создал первый телескоп для наблюдения за небесными телами. Принцип преломления лучей был установлен, оставалось только научиться каким-то образом сохранять полученные изображения на отпечатках еще не раскрытым химическим путем.

В 1820-е гг.. Жозеф Нисефор Ньепс открыл способ сохранения полученного изображения путем обработки попадающего света асфальтовым лаком (аналог битума) на поверхность из стекла в, так называемой камере-обскуре. С помощью асфальтового лака изображение принимало форму и становилось видимым. В первые в истории человечества картину рисовал не художник, а падающие лучи света в преломлении.

В 1835 г. английский физик Уильям Тальбот, изучая возможности камеры-обскура Ньепса смог добиться улучшения качества фотоизображений с помощью изобретенного им отпечатка фотографии — негатива. Благодаря этой новой возможности снимки теперь можно было копировать. На своей первой фотографии Тальбот запечатлел собственное окно на котором четко просматривается оконная решетка. В будущем он написал доклад, где называл художественное фото миром прекрасного, таким образом заложив в историю фотографии будущий принцип печати фотографий.В 1861 г. фотограф из Англии Т. Сэттон изобрел первый фотоаппарат с единым зеркальным объективом. Схема работы первого фотоаппарата была следующей, на штатив закреплялся крупный ящик с крышкой сверху, через которую не проникал свет, но через которую можно было вести наблюдение. Объектив ловил фокус на стекле, где с помощью зеркал формировалось изображение.

  В 1889 г. в истории фотографии закрепляется имя Джорджа Истмана Кодак, который    запатентовал первую фотопленку в виде рулона, а потом и фотокамеру «Кодак»,  сконструированную специально для фотопленки. В последствии, название «Kodak» стало  брэндом будущей крупной компании. Что интересно, название не имеет сильной смысловой  нагрузки, в данном случае Истман решил придумать слово, начинающееся и заканчивающиеся на одну и ту же букву.

 В 1904 г. братья Люмьер под торговой маркой «Lumiere» начали выпускаться пластины для цветного фото, которые стали основоположниками будущего цветной фотографии.

 В 1923 г. появляется первый фотоаппарат в котором используется пленка 35 мм, взятая из кинематографа. Теперь можно было получать небольшие негативы, просматривая затем их выбирать наиболее подходящие для печатания крупных фотографий. Спустя 2 года фотоаппараты фирмы «Leica» запускаются в массовое производство.

В 1935 г. фотоаппараты Leica 2 комплектуются отдельным видеоискателем, мощной фокусировочной системой, совмещающие две картинки в одну. Чуть позже в новых фотоаппаратах Leica 3 появляется возможность использования регулировки длительности выдержки. Долгие годы фотоаппараты Leica оставались неотъемлимыми инструментами в области искусства фотографии в мире.

В 1935 г. компания «Kodak» выпускает в массовое производство цветные фотопленки «Кодакхром». Но еще долгое время при печати их надо было отдавать на доработку после проявки где уже накладывались цветные компоненты во время проявки.

В 1942 г. «Kodak» запускают выпуск цветных фотопленок «Kodakcolor», которые последующие полвека становятся одними из популярными фотопленками для профессиональных и любительских камер.

В 1963 г. представление о быстрой печати фотографий переворачивают фотокамеры «Polaroid», где фотография печатается мгновенно после полученного снимка одним нажатием. Достаточно было просто подождать несколько минут, чтобы на пустом отпечатке начали прорисовываться контуры изображений, а затем проступала полностью цветная фотография хорошего качества. Еще 30 лет универсальные фотоаппараты Polaroid будут занимать ведущие по популярности места в истории фото, чтобы уступить эпохе цифровой фотографии.

В 1970-х гг. фотоаппараты снабжались встроенным экспонометром, автофокусировку, автоматические режимы съемки, любительские 35 мм камеры имели встроенную фотовспышку. Чуть позже к 80-м годам фотоаппараты начали снабжаться ж/к панелями, которые показывали пользователю программные установки и режими фотокамеры. Эра цифровой техники только начиналась.

В 1974 г. с помощью электронного астрономического телескопа была получена первая цифровая фотография звездного неба.

В 1980 г. компания «Sony» готовит к выпуску на рынок цифровую видеокамеру Mavica. Снятое идео сохранялось на гибком флоппи-диске, который можно было бесконечно стирать для новой записи.

В 1988 г. компания «Fujifilm» официально выпустила в продажу первый цифровой фотоаппарат Fuji DS1P, где фотографии сохранялись на электронном носителе в цифровом виде. Фотокамера обладала 16Mb внутренней памяти.

В 1991 г. компания «Kodak» выпускает цифровую зеркальную фотокамеру Kodak DCS10, имеющую 1,3 mp разрешения и набор готовых функций для профессиональной съемки цифрой.

В 1994 г. компания «Canon» снабжает некоторые модели своих фотокамер системой оптической стабилизации изображений.

В 1995 г. компания «Kodak», следом за Canon прекращает выпуск популярных последние полвека пленочных своих фирменных фотокамер.

2000-х гг. Стремительно развивающиеся на базе цифровых технологий корпорации Sony, Samsung поглощают большую часть рынка цифровых фотоаппаратов. Новые любительские цифровые фотоаппараты быстро преодолели технологическую границу в 3Мп и по размеру матрицы легко соперничают с профессиональной фототехникой имея размер от 7 до 12 Мп. Несмотря на быстрое развитие технологий в цифровой технике, таких как: распознавание лица в кадре, исправление оттенков кожи, устранение эффекта «красных» глаз, 28-кратное «зумирование», автоматические сцены съемки и даже срабатывание камеры на момент улыбки в кадре, средняя цена на рынке цифровых фотокамер продолжает падать, тем более что в любительском сегменте фотоаппаратам начали противостоять мобильные телефоны, снабженные встроенными камерами с цифровым зумом. Спрос на пленочные фотоаппараты стремительно упал и теперь наблюдается другая тенденция повышения цены аналоговой фотографии, которая переходит в разряд раритета.


Принцип работы аналогового фотоаппарата: свет проходит через диафрагму объектива и, вступая в реакцию с химическими элементами пленки сохраняется на пленке. В зависимости от настройки оптики объектива, применения особых линз, освещенности и угла направленного света, времени раскрытия диафрагмы можно получить различный вид изображения на фотографии. От этого и многих других факторов формируется художественный стиль фотографии. Конечно, главным критерием оценки фотографии остается взгляд и художественный вкус фотографа.

Корпус.
Корпус фотоаппарата не пропускает свет, имеет крепления для объектива и фотоспышки, удобную форму ручки для захвата и место для крепления к штативу. Внутрь корпуса помещается фотопленка, которая надежно закрыта светонепропускающей крышкой.

Фильмовой канал.
В нем пленка перематывается, останавливась на нужном для съемке кадре. Счетчик механически связан с фильмовым каналом, при прокрутке которого указывает на количество отснятых кадров. Существуют камеры с моторным приводом, которые позволяют делать съемку через последовательно заданный промежуток времени, а также вести скоростную съемку до нескольких кадров в секунду.


Видоискатель.
Оптический объектив через которое фотограф видит в рамке будущий кадр. Зачастую имеет дополнительные метки для определения положения объекта и некоторые шкалы настройки светка и контрастности.

Объектив.
Объектив — мощный оптический прибор, состоящий из нескольких линз, позволяющий делать изображения на различном расстоянии со сменой фокусировки. Объективы для профессиональной фотосъемки помимо линз состоят еще из зеркал. Стандартный объектив имеет расстояние фокусаокругленно равное диагонали кадра, угол 45 градусов. Фокусное расстояние широкоугольного объектива меньшее диагонали кадра служит для съемки в небольшом пространстве, угол до 100 градусов. для удаленных и панорамных объектов применяется телескопический объектив у которого фокусное расстояние гораздо больше диагонали кадра.

Диафрагма.

Устройство регулирующее яркость оптической картинки объекта фотографирования по отношению к его яркости. Наибольшее распространение получила ирисовая диафрагма, у которой световое отверстие образуется несколькими серповидными лепестками в виде дуг, при съемке лепестки сходятся или расходятся, уменьшая или увеличивая диаметр светового отверстия.

Затвор

Затвор фотоаппарата приоткрывает шторки для попадания света на пленку, затем свет начинает действовать на пленку, вступая в химическую реакцию. От продолжительности приоткрытия затвора зависит экспозиция кадра. Так для ночной съемки ставится более длительная выдержка, для съемке на солнце или скоростной съемке максимально короткая.

Дальнометр.

Устройство с помощью которого фотограф определяет расстояние до объекта съемки. нередко дальномер бывает совмещен для удобства с видоискателем.

Кнопка спуска .

Запускает процесс фотосъемки длящийся не более секунды. В одно мгновение срабатывает затвор, раскрываются лепестки диафрагмы, свет попадает на химический состав фотопленки и кадр запечатлен. В старых пленочных фотоаппаратах кнопка спуска основана на механическом приводе, в более современных фотоаппаратах кнопка спуска, как и остальные движущиеся элементы камеры на электроприводе

Катушка фотплёнки
Катушка на которую крепится фотопленка внутри корпуса фотоаппарата.По окончании кадров на пленке в механических моделях пользователь перематывал фотопленку в обратном направлении в ручную, в более современных фотоаппаратах пленка перематывалась по окончании с помощью электромоторного привода, работающего от пальчиковых батареек.Фотовспышка.
Плохая освещенность объектов фотосъемки приводит к использованию фотоспышки. В профессиональной съемке к этому приходится прибегать только в неотлагательных случаях когда нет других приборов освещения экранов, ламп. Фотоспышка состоит из газорязрядной лампы в виде стеклянной трубки содержащей газ ксенон. При накапливании энергии вспышка заряжается, газ в стеклянной трубке ионизируется, затем мгновенно разряжается, создавая яркую вспышку при силе света свыше сотни тысяч свечей. При работе вспышки нередко отмечается эффект «красных глаз» у людей и животных. Это происходит потому, что при недостаточной освещенности помещения где проводится фотосъемка, глаза человека расширяются и при срабатывании вспышки зрачки не успевают сузиться, отражая слишком много света от глазного яблока. Для усранения эффекта «красных глаз» используется один из методов предварительного направления светового потока на глаза человека перед срабатыванием вспышки, что вызывает сужение зрачка и меньшим отражением от него света вспышки.

Принцип работы цифрового фотоаппарата на стадии прохождения света через линзу объектива тот же, что и у пленочного. Изображение преломляется через систему оптики, но сохраняется не на химическом элементе фотопленки аналоговым путем, а преобразуется в цифровую информацию на матрице от разрешающей способности которой и будет зависеть качество снимка. Затем перекодированное изображение в цифровом виде сохраняется на сменном носителе информации. Информацию в виде изображения можно редактировать, перезаписывать и отправлять на другие носители данных.

Корпус.

Корпус цифрового фотоаппарата имеет вид по аналогии с пленочным фотоаппаратом, но за счет отсутствия необходимости фильмового канала и места для катушки с пленкой, корпус современного цифрового фотоаппарата значительно тоньше обычного пленочного и имеет место для ЖК экрана, встроенного в корпус, либо выдвижного, и слоты для карт памяти.

Видоискатель. Меню. Настройки (ЖК экран) .

Жидкокристалический экран неотъемлимая часть цифрового фотоаппарата. Он имеет совмещенную функцию видоискателя, в котором можно приближать объект, видеть результат автофокусировки, выстраивать экспозицию по границам, а также использовать его в качестве экрана меню с настройками и опциями набора функций съемки.

Объектив.

В профессиональных цифровых фотоаппаратах объектив практически ничем не отличается от аналоговых фотокамер. Он также состоит из линз и набора зеркал и имеет те же механические функции. В любительских камерах объектив стал гораздо меньших форм и помимо оптического зума (приближение объекта) имеет встроенный цифровой зум, который способен многократно приблизить отдаленный объект.

Матрица сенсор.

Главный элемент цифровой фотокамеры небольшая пластина с проводниками которая формирует качество изображения, четкость которого и зависит от разрешающей способности матрицы.

Микропроцессор.

Отвечает за все функции работы цифровой камеры. Все рычаги управления камеры ведут к процессору в котором зашита программная оболочка (прошивка), которая отвечает за действия фотокамеры: работа видоискателя, автофокус, программные сцены съемки, настройки и функции, электрический привод выдвижного объектива, работа фотовспышки.

Стабилизатор изображений.

При покачивании камеры во время нажатия на спусковой завтор или при съемке с движущейся поверхности, например, с качающегося на волнах катера, изображение может получится размытое. Оптический стабилизатор практически не ухудшает качество полученной картинки за счет дополнительной оптики, которая компенсирует отклонения изображения при покачивании, оставляя изображение неподвижным перед матрицей. Схема работы цифрового стабилизатора изображения фотоаппарата при дрожании картинки заключается в условных поправках, вносимых при расчете картинки процессором, задействовав дополнительную треть пикселей на матрице, учавствующих только в коррекции изображения.

Носители информации .

Полученное изображение сохраняется в памяти фотоаппарата в виде информации на внутренней, либо внешней памяти. Фотоаппараты имеют разъемы для карт памяти SD, MMC, CF, XD-Picture и др., а также разъемы для подключения к другим источникам храненияинформации компьютеру, HDD сменным носителям и т.п.

Цифровая фототехника сильно поменяла представления в истории фотографии о том какое должно быть художественное фото. Если в прежние времена фотографу приходилось идти на различные ухищрения, чтобы получить интересный цвет или необычный фокус для определения жанра фотографии, то теперь есть целый набор примочек, включенных в программное обеспечение цифровой фотокамеры, коррекция размеров изображения, изменение цвета, создание рамки вокруг фото. Также любую отснятую цифровую фотографию можно подвергнуть редактированию в известных фоторедакторах на компьютере и легко установить в цифровую фоторамку, которые следом за пошаговым наступлением цифровых технологий становятся все более популярными для украшения интерьера чем-то новым и необычным.

Статьи‎ > ‎История Фотографии‎

Каково устройство объектива фотоаппарата? | fotoadvice.ru

Зачем начинающему фотографу знать устройство объектива фотоаппарата? Все дело в том, что объектив является важным элементом фотоаппарата, но в силу каких-то причин большинство новичков его просто недооценивают. Объектив отвечает за формирование изображения на матрице, и ни какие электронные «прибамбасы» не в состоянии исправить неверно сформированное изображение.

Главным элементом оптической системы объектива является линза. В основном линзы изготавливаются из стекла специального сорта, но для уменьшения стоимости в объективах бюджетных фотокамер устанавливаются линзы из пластика. Пластиковые линзы пропускают гораздо меньшее количество света.

В одном объективе может находиться несколько линз, собранных в пакеты. Увеличение количества пакетов линз в объективе способствует минимизации искажений, вносимых объективом. Отсюда следует прямая зависимость качества получаемого изображения от количества линз в объективе.

Рисунок 1. Устройство объектива фотоаппарата в разрезе.

Искажения изображения и устройство объектива фотоаппарата

Искажения, которые создает объектив, называются аберрацией. Аберрации могут быть как геометрическими (бочкообразное или подушкообразное изображение), так и хроматическими. Наиболее ярко хроматические аберрации проявляются по краям объектов или на границах контрастных участков изображения. Аберрации в основном наблюдаются у дешевых объективов.

Геометрические аберрации связаны с искажением света при проходе через оптическую систему объектива, где он частично поглощается материалом линз, частично рассеивается и частично преломляется. Эти процессы напрямую влияют на качество изображения и силу света, попадающего на матрицу.

Хроматические аберрации связаны с волновой природой света. Волны, имеющие разную длину, проходят через оптическую систему объектива с разной скоростью. Вследствие этого происходит спектральное разложение света. Этот эффект можно проиллюстрировать опытом Ньютона с призмой.

Рисунок 2. Разложение солнечного света на спектр. Красная составляющая спектра имеет более длинную волну.

Устройство объектива фотоаппарата с множеством линз как раз и служит для компенсации данного эффекта. В теории рост количества линз в объективе способствует максимальной компенсации хроматической аберрации, но на практике возникает множество потерь из-за поглощения, рассеяния и искажения света при его прохождении через линзы. Кроме всего прочего, усложняется изготовление и сборка объектива, а это означает существенный рост в цене.

Устройство объектива фотоаппарата одинаково как пленочного, так цифрового. Все объективы обладают одними и теми же параметрами. К важным характеристикам объективов относят фокусное расстояние, диафрагму (апертуру), выдержку, чувствительность и светосилу. Но об этом в другой раз.

P. S. Если данная статья была полезна для вас, поделитесь ею со своими друзьями в социальных сетях! Для этого просто кликните по кнопкам ниже и оставьте свой комментарий!

С этой статьей так же читают:

Фотоаппарат | Физика

Фотоаппаратом называется устройство для получения оптических изображений различных объектов на светочувствительном слое фотопленки или какого-либо другого фотоматериала.

Первым аппаратом, с помощью которого удалось получить изображения различных объектов, была камера-обскура (от лат. obscurus — темный). Она представляла собой темный ящик с небольшим отверстием в одной из стенок и позволяла получать действительные и перевернутые изображения предметов, помещенных перед ним, без использования каких-либо линз (рис. 92). Для наблюдения этого изображения заднюю стенку камеры (экран) изготавливали из матового стекла или промасленной бумаги.

Камера-обскура была изобретена арабским ученым Ибн-аль-Хайсамом (965—1039), известным в Европе под именем Альхазена. Более или менее широкое распространение она получила в XVI—XVII вв. Проецируя изображение, даваемое камерой, на бумагу или холст и обводя его контуры, можно было получить рисунок, изображающий человека или какой-либо предмет. Немецкий астроном И. Кеплер использовал камеру-обскуру для наблюдения солнечного затмения 1600 г.

В 30-х гг. XIX в. французский художник и изобретатель Луи Дагер поместил в отверстие камеры линзу, а туда, где ранее находился экран, светочувствительную пластинку, покрытую иодистым серебром. Под воздействием света в светочувствительном слое пластинки создалось скрытое изображение. Проявив пластинку путем специальной химической обработки, Дагер получил первую в мире фотографию. Сообщение об этом открытии было опубликовано в 1839 г.

С тех пор этот год считается годом изобретения фотографии (или дагеротипии, как назвал ее в честь себя сам Дагер, постаравшись затемнить тем самым роль своего компаньона Ж. Н. Ньепса в ее изобретении).

В том же году во Франции началось серийное производство фотографических камер. Эти первые (деревянные) камеры были громоздкими и неудобными в обращении. Однако уже через три года был сконструирован первый металлический фотоаппарат небольшого размера. В результате последующего совершенствования аппарата, его механизмов и объектива, а также используемого в нем светочувствительного материала фотоаппарат принял современный вид.

Одной из основных частей фотоаппарата является объектив, состоящий из нескольких линз и помещаемый в передней части светонепроницаемой камеры. Внутри камеры находится фотопленка. Объектив можно плавно перемещать относительно пленки для получения на ней четких изображений предметов, расположенных на разных расстояниях от фотоаппарата.

При фотографировании объектив открывается при помощи специального затвора, и лучи света от фотографируемого предмета попадают на фотопленку (рис. 93). Под действием света в светочувствительном слое пленки происходит разложение микроскопических кристалликов бромистого серебра. На тех участках, где это произошло, получается скрытое изображение. Оно остается невидимым до тех пор, пока пленку не опустят в специальный раствор — проявитель. Под действием проявителя пленка начинает чернеть, причем раньше всего на тех участках, которые были освещены сильнее. Вынув пленку из проявителя, ее следует ополоснуть и перенести в раствор закрепителя (фиксаж). Закрепитель растворяет и удаляет из пленки оставшееся бромистое серебро и тем самым прекращает процесс ее почернения. На пленке остается негатив — изображение, в котором светлые места сфотографированного предмета выглядят темными, а темные, наоборот, светлыми (более прозрачными). Затем пленку промывают и сушат.

С негатива получают позитив, т. е. изображение, на котором темные места расположены так же, как и на фотографируемом предмете. Для этого негатив помещают между источником света и фотобумагой. Темные участки пленки пропустят меньше света, чем более светлые (т. е. более прозрачные), и поэтому после проявления и закрепления мы увидим на фотобумаге реальную картину распределения темных и светлых областей фотографируемого объекта.

Современная жизнь уже немыслима без фотографии. Она находит широкое применение в науке, технике, искусстве. Фотографии стали цветными, а многие фотоаппараты — автоматическими. Использование фотографии в астрономии позволило открыть Плутон и другие небесные тела. А фотографии, переданные с космических станций посредством радиоволн, дали возможность увидеть обратную (невидимую с Земли) сторону Луны, а также пейзажи Марса и Венеры.

??? 1. Что представляет собой камера-обскура? Почему она так называется? 2. Кто и когда получил первую фотографию? 3. Опишите принцип действия фотоаппарата. 4. Охарактеризуйте изображение, даваемое объективом фотоаппарата, изображенного на рисунке 93. Где должен располагаться предмет, чтобы это изображение было именно таким? 5. Можно ли сфотографировать предмет, расположенный между объективом и его фокусом? Почему?

Экспериментальное задание. Изготовьте камеру-обскуру. Для этого воспользуйтесь банкой от чипсов или картонной коробкой, обклеенной изнутри черной бумагой. Получите с помощью сделанной вами камеры изображение хорошо освещенного предмета (например, нити лампы накаливания). Охарактеризуйте полученное изображение. Имейте в виду, что наиболее резкое изображение в камере-обскуре возникает тогда, когда диаметр d отверстия в ней (в миллиметрах) составляет примерно 0,04√l, где l — расстояние от отверстия до экрана, также выраженное в миллиметрах.

Объективы, часть II. Характеристики и свойства объективов

Понимание природы света даёт большое преимущество в производстве отличных фотографий. То как свет взаимодействует с объективом – пожалуй наиболее важная отправная точка. В этой статье мы рассмотрим конструкцию фотообъективов, что позволит вам в частности понять какими составляющими определяется их цена.

Выбор объектива для покупки может быть нелегкой задачей, ведь есть столько факторов для оценки: качество сборки, стоимость, диафрагма, стабилизация изображения, но чем же на самом деле один объектив отличается от другого?

Группы, элементы и какое это имеет значение

Каждый объектив состоит из отдельных линз, называемых «элементы». Смысл использования многих элементов в том, чтобы уменьшить аберрации, чтобы изображение было лишено недостатков.

Линзы различных размеров и форм сгруппированы вместе чтобы по-разному преломлять свет различной длины волн и позволять свету сводиться, и, таким образом, уменьшать аберрации. Представьте себе прохождение света через призму, когда он входит под одним углом, преломляется стеклом, и затем выходит в другом направлении.

Каждый стеклянный элемент различной формы по-разному преломляет свет, что позволяет дизайнерам объективов управлять прохождением света. Группировка элементов, складывание линз различной формы одна на другую, дает возможности лучшего контроля света и уменьшения искажений.

Типы элементов

Большинство линз имеют изогнутую поверхность и называются сферическими поскольку они соответствуют небольшому участку поверхности сферы. Исторически они были недороги и просты в изготовлении простым шлифованием, но их конструкция допускает искажения световых волн и приводит к несовершенствам изображения.

Эти дисторсии уменьшены в более высококачественных объективах с использованием асферических линз, о которых я расскажу позже.

Апохроматические (APO) элементы используются в основном в телеобъективах. Длиннофокусные объективы особенно восприимчивы к хроматическим аберрациям, которые приводят к снижению контрастности и резкости изображений. Апохроматический элемент сводит свет трех цветов – зеленый, синий и красный в одной плоскости, что снижает искажения.

Топовые объективы также содержат «плавающие» внутренние элементы, перемещающиеся в зависимости от фокусного расстояния чтобы уменьшить кривизну поля, вызывающего потерю резкости по краям кадра.



Читаем название объектива. Технологии объективов Nikon


Пример названия объектива

Какое фокусное расстояние у объектива, какая светосила? Подойдет ли он к вашей фотокамере? Всё это можно узнать из названия объектива. Научимся его читать. Прежде всего, в названии объектива указан производитель. Объективы производства компании Nikon называются Nikkor — это фирменное название семейства оптики. В названии объектива это слово может употребляться наравне с названием фирмы-производителя.

Остальное название объектива строится из аббревиатур, обозначающих те или иные технологии и стандарты, и числовых характеристик: фокусное расстояние и светосила.

Мы уже знаем, что фокусное расстояние объектива обозначается в миллиметрах. В случае с зум-объективами указывается самое короткое и самое длинное фокусное расстояние данного через тире. Например: “18 — 55мм”. Если перед нами фикс-объектив, то и его фокусное расстояние обозначается одним числом. Например: “50 мм”. Светосила объектива, как и фокусное расстояние, может быть постоянной и переменной. У некоторых зум-объективов встречается переменная светосила. Тогда так же через черточку указывается светосила объектива при самом коротком фокусном расстоянии и на самом длинном. К примеру: F/3.5-5.6. Если же объектив обладает постоянной светосилой, светосила обозначается одним числом. Например: “F/1.4”.

Среди аббревиатур в названии современного объектива от Nikon могут использоваться следующие:

AF (Autofocus) — автофокусные объективы без встроенного мотора для автоматической фокусировки. Используют мотор, встроенный в фотокамеру. Не все современные фотоаппараты имеют встроенный мотор для фокусировки: у бюджетных аппаратов Nikon его нет.

Такие объективы называются “отверточными”, как и фотокамеры, обладающие встроенным мотором фокусировки. Такое название получено из-за того, что привод автофокуса, выглядывающий из байонета фотоаппарата, похож на отвертку. Этот привод крутит специальный “винтик” на объективе, тем самым перемещая группы линз и наводя объектив на резкость.

Байонет камеры без встроенного привода фокусировки.

Байонет камеры со встроенным приводом фокусировки. Красным квадратом выделена та самая “отвертка”, обеспечивающая связь между объективом типа “AF” и встроенным мотором фокусировки.

Если такой объектив будет установлен на фотокамеру без встроенного привода фокусировки, автофокус не будет работать. Будет возможна только ручная фокусировка.

На сегодня встроенный привод фокусировки имеют фотокамеры начиная с Nikon D7100 и старше: Nikon D600, Nikon D610, Nikon D750, Nikon D800, Nikon D800E, Nikon D810, Nikon D4, Nikon D4s.

Не имеют встроенный привод фокусировки камеры младше Nikon D7100: Nikon D3200, Nikon D3300, Nikon D5200, Nikon D5300 и другие.

На сегодня “отверточные” объективы считаются практически устаревшими, все новые объективы оснащаются собственными моторами и имеют аббревиатуру “AF-S”.

AF-S (AF-Silent Wave Motor) — автофокусный объектив со встроенным мотором автофокуса. При использовании такого объектива автофокус будет работать на любой цифровой зеркальной фотокамере Nikon.

SWM (Silent Wave Motor) — ультразвуковой мотор фокусировки. Используется в объективах стандарта AF-S.

G (G-type) — Объективы без кольца управления диафрагмой. Кольцо управления не нужно при использовании современных фотоаппаратов, поэтому от него решили избавиться. Однако, объективы серии G не получится использовать на старых, полностью механических фотоаппаратах типа Nikon FM3a, Nikon FM10

Micro (Macro) — предназначенные для макросъемки объективы. Обладают короткой минимальной дистанцией фокусировки, что позволяет снимать предметы очень крупным планом.

PC-E (Perspective Control) — тилт-шифт объективы, объективы с коррекцией перспективы.

ED — в объективе использованы специальные линзы для снижения хроматических аберраций.

AS — в объективе используются асферические линзы.

IF (Internal focus) — объектив с внутренней фокусировкой. При фокусировке передняя линза объектива остается неподвижной. Таким образом повышается надежность объектива.

RF (Rear Focusing) — почти то же самое, что IF. Только фокусировка осуществляется задними оптическими элементами с малым весом, а значит занимает меньше времени.

DC (Defocus Control) — функция контроля зоны нерезкости. Включив ее, можно добиться более красивого боке.

VR (Vibration Reduction) — очень важная функция: стабилизатор изображения.

N (Nano Crystal Coat) — за счет нанесения на линзы объективы нанокристаллов уменьшается подверженность объектива к бликам, получается более контрастное изображение.

AF-D, D (AF-Distance Information) — объективы, передающие камере информацию о дистанции до объекта. Сегодня эта возможность есть у всех объективов. Объективы, маркирующиеся аббревиатурами AF-D и D — это не самые новые объективы.

DX — объектив разработан для камер с матрицами формата APS-C. Объектив проецирует изображение небольшого размера, как раз для уменьшенной матрицы APS-C. Так что если поставить его на камеру с полнокадровой матрицей (а это вполне возможно), по краям кадра будет очень сильное затемнение. Современные полнокадровые камеры Nikon имеют режим совместимости с DX-оптикой. В таком режиме фотокамера будет получать изображение не со всей площади матрицы, а с области, равной по площади матрице формата APS-C. То есть никакого виньетирования (затемнения краев) не будет, но и полнокадровый аппарат превратиться в кроп-камеру.

FX — объектив, разработанный для использования с полнокадровыми фотоаппаратами. В полной мере может использоваться и с камерами APS-C.

CX — объективы, разработанные для использования с фотокамерами системы Nikon 1. Несовместимы с зеркальными аппаратами Nikon, имеющими байонет Nikon F.

Теперь мы запросто сможем расшифровать названия объективов Nikkor, узнать об их основных характеристиках, технологиях и стандартах.

Подробнее с технологиями и аббревиатурами, использующимися в названиях объективов можно познакомиться на сайте Nikon: https://www.nikon.ru/ru_RU/product/nikkor-lenses/glossary

На этом тема изучения объективов не окончена. В следующих уроках нам предстоит узнать как классифицируются объективы по углу обзора, как меняется передача пространства и перспективы на объективах с различным фокусным расстоянием, как работать с глубиной резкости.

Литые и шлифованные линзы

Способ производства оптических элементов объективов также оказывает влияние на качество изображений, которые они способны создавать. Существуют три основных способа производства, первый из которых – шлифование и полировка асферических линз. Процесс шлифовки и полировки стекла является трудоемким и дорогим, поэтому такие линзы встречаются только в профессиональных объективах. Canon использует такие элементы большого диаметра для своих объективов L-серии чтобы обеспечить высокую разрешающую способность при падении света под любым углом.

Элементы следующего уровня – это литые асферические линзы, или в терминологии Nikon – линзы точной формовки (PGM). Стекло нагревается до такой степени, что может быть сформована асферическая поверхность. Это делается с помощью штампа или формы. Nikon утверждает, что высокая степень точности таких линз несомненна в связи с тем, что каждый элемент измеряется в микронах – это 1/1000 мм. Линзы этого типа менее дороги в изготовлении и, в следствии этого, могут быть найдены в объективах для продвинутых любителей и энтузиастов.

Третий из наиболее распространенных методов изготовления оптических элементов – это гибрид из стеклянной линзы, покрытой асферическим пластиком для придания формы. Эти линзы чувствительны к изменениям окружающей среды, таким как влажность и температура и потому не очень подходят для профессионального применения и используются в любительской технике.

ГЛУБИНА РЕЗКОСТИ

Глубиной резкости называется свойство объектива изображать в одной плоскости и практически с одинаковой резкостью предметы, удаленные от объектива на различные расстояния. В практической деятельности глубина резкости характеризуется ближней и дальней границами, в пределах которых изображение резкое. Иллюстрация глубины резкости приведена на рисунке 1.

Наглядно видно, что резкость цифр и миллиметровых штрихов на линейке не одинакова. Линейка отображается резкой от 14,5 см до 19,5 см.

Как ни покажется странным и противоречивым, но объектив, формируя изображение, не обладает никакой глубиной резкости и никак не влияет на ее величину. Резкими будут только те точки изображения, которые лежат в плоскости наводки на резкость.

На самом деле глубина резкости проявляется на изображении в связи с ограниченными возможностями человеческого зрения. Если напечатать на листе бумаги кружки с разным диаметром, но меньше 0,1 мм и рассматривать их невооруженным глазом с расстояния наилучшего зрения (25 см), то будет казаться, что все они одного размера. Другими словами человеческий глаз не в состоянии различить ни размеры кружка, ни тем более его содержание, если диаметр кружка равен или меньше 0,1 мм.

В оптике эти кружки, определяющие глубину резкости, получили название «кружок рассеяния». Поэтому когда оператор смотрит на монитор, то все мелкие элементы изображения, которые его зрение не в состоянии увидеть, и будут определять диапазон глубины резкости. В подтверждении этого, на рисунке 2 приведен увеличенный фрагмент ближней границы глубины резкости. На снимке хорошо видны нерезкие штрихи, вплоть до цифры 16, хотя на рисунке 1 они казались резкими. Если продолжать увеличение линейки, то нерезкой будет выглядеть вся линейка за исключением места фокусировки объектива.

Глубина резкости видеокамеры в течение суток изменяется. Связано это с тем, что меняющаяся освещенность сцены вызывает у объектива с автоматической диафрагмой изменение отверстия диафрагмы. Обратимся к рисунку 3, на котором приведена иллюстрация того, как изменяющееся отверстие диафрагмы формирует глубину резкости различной величины.

Если диафрагма полностью открыта (рис. 3а), то все лучи сходятся в фокусе на ПЗС матрице. Зная диаметр допустимого кружка рассеяния, можно определить глубину резкости относительно плоскости ПЗС матрицы. На рисунке глубина резкости выделена треугольниками голубого цвета. Если закрыть объектив диафрагмой (рис. 3б), то лучи сойдутся в той же точке фокуса, но допустимый кружок рассеяния будет находиться от плоскости ПЗС матрицы значительно дальше, и, как следствие, глубина резкости будет больше.

Рис. 3а

Рис. 3б

Зная это свойство объектива его необходимо учитывать при проектировании секторов наблюдения, не допуская потерю резкости на контролируемых службой безопасности участках.

Пример, который рассмотрен на рисунке 3, иллюстрирует изменение глубины резкости вокруг ПЗС матрицы, т.е в пространстве изображений. Поскольку оптические построения подчиняются закону дуальности, то такое же изменение глубины резкости, но в другом масштабе расстояний, будет происходить и в пространстве объектов, т.е. в реальной действительности.

Покрытие линз

Возможно вы не знали, но обычно линзы теряют часть света из-за отражения от поверхностей. В некоторых случаях каждый элемент может терять порядка 5% света, в результате чего количество света, попадающего в объектив с 10 элементами будет уменьшено примерно на 50%.

Покрытия линз были разработаны для уменьшения отражений света и облегчения прохождения света через линзы. Примерно так же, как покрытие на солнцезащитных очках отражает часть спектра света, позволяя остальному свету проходить к вашим глазам.

Материалы, такие как фторид магния и моноксид кремния, используют в качестве покрытий в виде очень тонких слоев на поверхности, причем каждая линза обычно покрывается несколькими слоями чтобы уменьшить отражения световых волн различных частей спектра.

Например, самые лучшие из линз Canon имеют более 10 слоев покрытий, что обеспечивает светопропускание на уровне 99.9% в диапазоне от ультрафиолетового до ближнего инфракрасного света.

Искажения и аберрации

В идеальном мире объектив должен отображать любую прямую линию как идеально прямую. Однако в реальности любой объектив, имеющие изогнутые поверхности, не способен сводить параллельные лучи в одной точке, так что они искажаются и искривляются. Эта кривизна является особенностью любого объектива сконструированного из сферических элементов, но она может значительно отличаться в зависимости от конкретного объектива и используемого фокусного расстояния.

Это искажение наиболее заметно при работе с параллельными линиями и объектами, расположенными у края кадра, где эффект максимален. Большинство зум-объективов страдают «бочковыми» искажениями на широком конце, когда в середине изображения образуется «выпуклость».

Они также могут быть подвержены «подушечным» искажениям на длинном конце, которое является противоположным случаем и сопровождается «втягиванием» изображения в центре. Тем не менее, как правило существует некое среднее положение зум-объектива, в котором прямые линии окажутся прямыми и которое несомненно стоит найти!

Искажение зависит не только от объектива. Оно также варьируется в зависимости от вашей близости к объекту съемки. Для ландшафтных и архитектурных фотографов искажения объектива – серьезная проблема, поскольку они хотят получать изображения с прямыми линиями и правильными пропорциями. В то же время портретные фотографы обычно не работают с прямыми линиями и поэтому искажения для них не так страшны.

Большинство производителей оптики сегодня создают объективы с использованием асферических элементов, созданных для уменьшения искажений и аберраций. В отличие от сферических линз, асферические имеют изогнутую поверхность, способную исправить аберрации. Это достигается благодаря тому, что свет, проходящий через линзу, собирается в одной точке, так что единственный поток света попадает на матрицу, что уменьшает искажения, вызываемые прохождением через линзу нескольких лучей.

На иллюстрации ниже представлены 2 фотографии, которые я недавно снял на свадьбе, при этом изображение слева покрыто бликами и искажениями света, а на правом получилось теплое свечение.

Как правильно выполнить смену объектива

Первый и очень важный пункт, который необходимо соблюсти – это чистота помещения, в котором происходит замена. Желательно, чтобы в комнате не было потоков воздуха. Прибор кладется вниз экраном на мягкую тряпку для предотвращения царапин. Далее необходимо подготовить объектив, который планируется установить. Желательно, чтобы он все это время находился под рукой. Пальцем левой руки надавливаем на кнопку разблокировки, после чего можно будет открутить и снять объектив. Откручивается объектив против часовой стрелки. Его следует отложить в сторону.

Снятый объектив надо закрыть защитным чехлом (крышкой), чтобы исключить попадание прямых солнечных лучшей, пыли и влаги.

Затем берем в руки новый объектив и фиксируем его по красным или белым (в зависимости от производителя) точкам. После того как объектив попадает в соответствующие пазы, его следует осторожно закрутить по часовой стрелке. Когда резьба будет полностью закручена, раздастся характерный щелчок, сигнализирующий о том, что процесс завершен.

При проведении замены оптики могут возникать различные проблемы. Если объектив заклинило, то следует предпринять несколько простых действий:

  • проверить дисплей прибора на наличие ошибок объектива;
  • вспомнить, не получал ли фотоаппарат физических повреждений за последнее время;
  • обратиться за разъяснением к руководству пользователя.

Если первичная диагностика никак не помогла, необходимо шлепнуть ладонью сбоку. Легкие удары по корпусу иногда помогают возобновить работу заклинившего объектива. Как один из вариантов, можно попытаться почистить тубус и подключить прибор через шнур к зарядке. Иногда проблема может скрываться в нехватке заряда батареи.

Совет! Иногда, если на камере не открывается объектив, следует вынуть из нее аккумуляторные батареи и карту памяти, а потом снова вставить их — это может помочь устранить возникшую ошибку.

По-прежнему не выдвигается объектив? Это можно сделать вручную. Для этого следует аккуратно вращать объектив пальцами, не в автоматическом режиме. Иногда можно слегка подтолкнуть или попытаться вытянуть оптику. Также можно положить прибор вниз объективом и постучать им по ладони, сложенной в виде пригоршни. Если раздастся щелчок, значит, линзы вернулись в свое изначальное положение. Иногда можно попробовать принудительный автофокус, в некоторых случаях есть вероятность исправить таким образов возникшую ошибку.

Если ни одна из предложенных рекомендация не помогла, лучше всего будет отнести камеру в сервис.

Диафрагма

Одна из главных характеристик, на которые обращают внимание фотографы при выборе объектива – это максимальная диафрагма, поскольку она определяет потенциал объектива в плане глубины резкости и работы в условиях слабого освещения. Диафрагма обозначается в виде дроби с фокусом в числителе и стопами в знаменателе и означает размер зрачка (открытой диафрагмы) объектива, который пропорционален квадрату фокусного расстояния объектива.

Например, 50мм объектив может иметь максимальную диафрагму f/1.2, но объективу с фокусным 100 мм потребуется в 4 раза большее отверстие для получения такой диафрагмы. Так что светосила объектива определяется не только диаметром отверстия, а зависит от фокусного расстояния.

Также необходимо учитывать, что 50 мм объектив имеет более широкое поле зрения и, следовательно, ему проще пропустить больше света. Большие телеобъективы компенсируют это очень большим диаметром переднего элемента, что в свою очередь приводит к увеличению сферических аберраций, для борьбы с которыми и обеспечения резкости изображений требуются дополнительные группы линз, а это существенно удорожает производство.

Боке

В фотографии термином боке называют способ отображения объективом расфокусированного света. Это наиболее заметно на небольших фоновых бликах, которые часто выглядят на фотографиях в виде световых кружков. Каждый объектив имеет разное боке в зависимости от его конструкции. Термином боке часто неправильно описывают малую глубину резкости с резким объектом на сильно размытом фоне. На самом деле этот термин относится лишь к тому, как выглядит зона нерезкости.

Способность объектива корректировать сферические аберрации способствует боке, поскольку дает светлым пятнам увеличиваться в размерах при удалении от фокуса с равномерным распределением света по кругу. Профессиональные объективы имеют великолепные возможности уменьшения искажений света через комбинацию групп элементов.

Однако наибольшее влияние на боке оказывает конструкция ирисовой диафрагмы. Важнейшим фактором является количество лепестков диафрагмы, что позволяет делать отверстие более округлым, создающим более привлекательное для глаза боке.

Профессиональные объективы как правило имеют больше лепестков и потому создают лучшее боке, как изображено на фотографии ниже, где сравниваются боке объектива Canon EF 50mm слева и более приятное боке объектива Canon L 24-105mm справа.

Устройство объектива фотоаппарата и органы управления.

Разберемся с тем, какие детали и органы управления расположены на объективе и зачем они нужны.

Nikon AF-S 50mm f/1.4G Nikkor

Nikon AF-S DX 18-140mm F3.5-5.6G ED VR Nikkor

  1. Байонетное крепление. При помощи него объектив устанавливается на фотоаппарат.
  2. Название объектива. Чуть ниже мы научимся расшифровывать все обозначения, используемые в названиях объективов Nikon.
  3. Переключатель между автоматической (A) и ручной (M) фокусировкой объектива.
  4. Включение и выключение оптического стабилизатора (VR — Vibration Reduction) объектива. Имеется только на объективах, оснащенных этим самым стабилизатором.
  5. Кольцо фокусировки. Необходимо для ручной фокусировки объектива.
  6. Шкала выбранного фокусного расстояния. Есть на большинстве зум-объективов, за исключением самых простых. На объективах с постоянным фокусным расстоянием тоже отсутствует за ненадобностью.
  7. Кольцо зумирования. Имеется только у зум-объективов. Необходимо для смены фокусных расстояний объектива (а вместе с этим и угла обзора объектива).
  8. Крепление для бленды. Бленда — это своеобразный “козырёк”, защищающий его переднюю линзу от бликов, которые могут возникнуть при съемке на ярком солнце. Помимо этого, бленда может выполнять защитную функцию, делая переднюю линзу объектива более труднодоступной для пальцев рук и защищая ее от физических повреждений при падении объектива.
  9. Резьба для установки светофильтров на объектив. Каждый объектив имеет определенный диаметр резьбы. Измеряется этот диаметр в миллиметрах: 52 мм, 67 мм, 72 мм, 77 мм. Под каждый диаметр резьбы выпускаются специальные светофильтры. Самый распространенный светофильтр — защитный. Его функция — защищать переднюю линзу объектива от механических повреждений. Светофильтрам будет посвящен отдельный урок, ведь это весьма обширная тема. Как узнать диаметр резьбы под светофильтр вашего объектива? Обычно он написан рядом с его передней линзой. Если же вдруг там он не написан, всегда можно найти характеристики объектива в интернете или инструкции к нему. Помимо этого, можно посмотреть на обратную сторону крышки от объектива. На них часто указан диаметр.

10.Шкала дистанции фокусировки. Есть не на всех объективах. Помогает понять, на какую дистанцию сейчас сфокусирован объектив. Особенно полезна при предметной, пейзажной фотосъемке.

Конструктив объектива

На рубеже XIX и XX веков компанией Цейс был создан целый ряд объективов, ставших стандартами конструктива на многие годы. Их оптические схемы используются и сегодня с немного модернизированным дизайном.

Планар (Planar)

Объектив Планар изобрел сотрудник Carl Zeiss Пол Рудольф, в 1896 году. Его шестиэлементный симметричный дизайн имел диафрагму f/4.5 и создавал чрезвычайно резкое изображение, но страдал засветкой в результате большого количества переходов воздух-стекло, на сегодняшний день решенной просветляющими покрытиями. Самый знаменитый Планар –пожалуй 110мм f/2.0. Он был популярным выбором для владельцев среднеформатных камер Hasselblad серий 2000 и 200.

Тессар (Tessar)

Тессар – еще один объектив, разработанный Полом Рудольфом во время работы на Цейс. Впервые представленный в 1902, Тессар получил название от греческого слова, означающего четыре, благодаря конструкции из четырех элементов. С оригинальной диафрагмой f/6.3, Тессар был компактным объективом, обеспечивающим высокое оптическое качество по доступной цене. Многие 50мм объективы построены на его оптической схеме.

Соннар (Sonnar)

Соннар появился чуть позже и был запатентован Цейсом в 1929 году. Его разработчиком был доктор Людвиг Бертеле. Первый Соннар был 50мм объективом, состоящим из пяти элементов и предназначенным для дальномерок Zeiss Contax. Его название происходит от немецкого слова «Sonne», означающего «солнечный», благодаря диафрагме f/1.5.

Соннар смог победить конструктивные недостатки предыдущих объективов, предлагая лучшую контрастность и меньшие засветы, чем Планар и гораздо лучшую диафрагму, и меньшие хроматические аберрации, чем Тессар.

ЧЕТКОСТЬ ИЗОБРАЖЕНИЯ

Зачастую все ухищрения, связанные с получением резкого изображения на экране монитора, не приводят к положительным результатам. Как не пытается инсталлятор добиться хорошей резкости, все равно остается ощущение размытости очертаний предметов и границ яркостных переходов.

В таких случаях правильнее говорить не о недостатке резкости, а об отсутствии четкости изображения. Потеря четкости изображения имеет место в связи с недостаточно качественным объективом.

У объектива четкость формируемого изображения в основном определяется двумя параметрами — хроматическими аберрациями и дифракцией.

Рис. 4.

Аберрация — потеря четкости

Рис. 5.

Усиление дифракционного эффекта при закрытии диафрагмы [1]

Хроматические аберрации проявляются при сильно открытой диафрагме и связаны с тем, что лучи света с разной длиной волны (разный цвет) преломляются в объективе под разными углами (рис. 4). При этом каждый из цветов пересекает оптическую ось в разных местах (точках фокуса), создавая на ПЗС или CMOS матрице расфокусированное изображение, приводящее к потере четкости.

При закрытии отверстия диафрагмы хроматические аберрации уменьшаются, но усиливается влияние дифракции, которая так же, как и аберрации, проявляется в размытии изображения.

На рисунке 5 показан дифракционный эффект, который изменяется при изменении отверстия диафрагмы. Нанесенная сетка на рисунках представляет собой пикселы квадратной формы, а белое пятно — проявление дифракционного эффекта. Максимально четким будет изображение при размере дифракционного пятна равном или меньшем размеру пиксела (f/5.6). При закрытии диафрагмы размеры дифракционного пятна начинают увеличиваться, создавая паразитную засветку соседним пикселам (f/11-f/22). Чем большее количество пикселов подвержено такой засветке, тем сильней ощущение потери четкости изображения.

Но не всегда объектив является основной причиной дифракционных искажений. В некоторых случаях, когда размеры пиксела в видеокамере очень маленькие, дифракционный эффект может возникнуть и с объективом, параметры которого не вызывали нареканий.

В современных видеокамерах для снижения влияния аберрационных и дифракционных искажений, приводящих к потере четкости, появился режим P-iris. Использование этого режима позволяет видеокамере, несмотря на изменяющиеся условия освещенности в течение продолжительного времени, поддерживать такое значение диафрагмы, при котором и аберрационные и дифракционные искажения минимальны, а это залог того, что картинка будет резкой и четкой.

Рис. 6.

Тест-таблица

Рис. 7.

Искажение изображения при уменьшении длительности штрихов

Стабилизация изображения

Если говорить о качестве изображений, которое может обеспечить объектив, то системы стабилизации изображения (IS) или уменьшения вибраций (VR) играют исключительно важную роль, позволяя получать резкие фотографии на выдержках до четырех раз длиннее, чем при обычной съемке с рук.

Как Canon, так и Nikon используют чрезвычайно умные технологии с применением датчиков движения для обнаружения нежелательных подвижек, способных размыть изображение. Этот сигнал затем обрабатывается микропроцессором, управляющим мотором, регулирующим положение группы линз с точностью в доли секунды.

Соответствие между углом зрения и размером сенсора

Камеры с различными размерами сенсоров (такими как 1/4″, 1/3″, 1/2″, 2/3″ и 1″) и с одинаковым фокусным расстоянием, обладают различными углами зрения. Если объектив предназначен для работы с большим размером сенсора, то он вполне подойдёт и для работы с сенсором меньшего размера. Однако, если объектив предназначен для работы с сенсором формата 1/3″, а будет использоваться с сенсором формата 2/3″, то у изображения на мониторе будут тёмные углы.

Соотношение между размерами сенсоров таково: 1:0,69:0,5:0,38:0,25. Это означает, что сенсор формата 1/2″ — это 50% от сенсора формата 1″, сенсор формата 1/2″ — это 75% от сенсора формата 2/3″, а сенсор формата 1/3″ — это 75% от сенсора формата 1/2″.

Вращающиеся передний элемент

Ряд объективов имеют вращающийся передний элемент, что не является большой проблемой пока не начинаешь пользоваться некоторыми видами фильтров, например –поляризатором. Проблема в том, что когда вы поворачиваете фильтр в нужное положение, а затем изменяете фокусировку, поляризатор сдвигается, что может затруднить съемку. Решением может быть покупка квадратного держателя фильтров. В общем этот момент следует учитывать при покупке таких объективов если вы пользуетесь светофильтрами.

Самостоятельная юстировка объектива

Процесс юстировки представляет собой настройку резкости для улучшения показателей работы оптики. Калибровка осуществляется за счет правильного выставления всех линз. Это позволяет делать более качественные снимки. Процесс это не простой, требующий опыта, сноровки и усидчивости, так что производить его рекомендуется только в том случае, если пользователь уверен в своих собственных силах.

Юстировка фотоаппарата производится в случае заводского брака, если объектив «разболтан» увеличились люфты и зазоры, после механических повреждений фототехники.

Многие современные приборы могут похвастаться функцией самодиагностики «Лайв Вью». С наличием этой функции гораздо проще установить, нужна прибору юстировка или нет. Если модель оснащена «Лайв Вью», то для юстировки необходимо выполнить следующие шаги.

  1. Поставить прибор на штатив, включить стабилизацию, если имеется.
  2. Используя «Лайв Вью», осуществляется фокусировка на цели (мишени).
  3. Диафрагма должна быть открытой.
  4. Отключение функции «ЛайвВью» с возвращением аппарата в режим «One-Shot AF» с выставленным на центральной точке фокусом. Штатив и кольцо фокусировки трогать при этом нельзя.
  5. Следует в полсилы нажать на кнопку AF или спуск затвора, следя за показателями расстояния на самом объективе и кольцом фокусировки. Последнее должно оставаться неподвижным. Если ничего не сдвинулось, то юстировка не требуется.
  6. Если же шкала расстояния или кольцо все-таки сдвинулись, необходимо зафиксировать, куда именно. Если у модели имеется подстройка автофокуса, необходимо внести соответствующие исходным параметрам поправки.

Юстировка в домашних условиях без «Лайв Вью» и подстройки автофокуса возможна, но требует глубоких познаний и наличие специальных приборов: оптической скамьи с коллиматором, микроскопа.

Выдвижение зума

Я обнаружил, что некоторые объективы, даже среди L-серии Canon, имеют тенденцию к раздвижению если они опущены вниз. Это, конечно, вызвано тяготением, но может раздражать при съемке, когда вы несете камеру сбоку у пояса, а затем подносите к глазам с полностью выдвинутым зумом.

Некоторые объективы имеют встроенный фиксатор, который ограничивает движение зума и блокирует его на нужном фокусном расстоянии, что решает проблему, но также может быть помехой если требуется работать быстро и зуммировать не теряя каждый раз время на переключение фиксатора.

Размеры сенсоров и изображений

Объектив создаёт изображение в форме круга (image circle), а в камерах типа CCTV чувствительный элемент имеет прямоугольную форму (image size), поэтому получается прямоугольное изображение внутри круга (image circle). Отношение горизонтального размера сенсора к вертикальному называется форматным соотношением (aspect ratio) и для стандартной CCTV камеры это соотношение равно 4:3.

Размер сенсора (оптический формат)

Диаметр По горизонтали По вертикали
1/4″ 4,0 мм 3,2 мм 2,4 мм
1/3″ 6,0 мм 4,8 мм 3,6 мм
1/2″ 8,0 мм 6,4 мм 4,8 мм
2/3″ 11,0 мм 8,8 мм 6,6 мм
1″ 16,0 мм 12,8 мм 9,6 мм

Применение на практике

Вот так выглядит тестовый стенд:

Для чистоты эксперимента сделал так, верхний свет снял и сделал фото на боковом, потом надел обратно и уже снимал верхним, а потом снимал вместе с включенным боковым и верхним светом.

Боковой свет:

Верхний максимальный режим:

Верхний минимальный режим:

Верхний + боковой:

Асферические объективы

В стандартных объективах используются комбинации из сферических линз. Однако сферические линзы не всегда могут фокусировать световой луч, проходящий через края линзы в точке, где фокусируются лучи, проходящие через центр той же самой линзы. Это вызывает трудности в проектировании шикокоугольных и супер-широкоугольных объективов. В объективах Токины используются асферические элементы, которые не только решают проблему сферических аберраций, но и полностью корректируют количество света, исправляют дисторсию. Используя стекло известного производителя Хоя Токина добилась блестящих результатов в разработке высококачественных моделей объективов для фотографии и видеонаблюдения.

Принцип работы объективов с ИК-коррекцией

Так как при наступлении темноты частотный спектр излучения сдвигается в область инфракрасного диапазона, обычные объективы, предназначение для использования в светлое время суток не могут передавать четкое изображение — точка фокуса сдвигается. Особенно ситуация усугубляется, если используется инфракрасная подсветка. Изображение становится расплывчатым и блеклым. Объективы Токина с ИК-коррекцией показывают блестящие показатели разрешения в ближнем инфракрасном диапазоне благодаря тому, что оптическая конструкция и используемые материалы в линзах не позволяют смещаться точке фокусировки, как показано на картинке справа.

Преимущества зум объективов

Первое преимущество — это универсальность. Такой объектив можно поставить на камеру и не менять годами, если он подходит вам своим диапазоном фокусных расстояний.

Второе преимущество — легко приближать и отдалять объекты. Нет необходимости каждый раз ходить ногами.

Третье преимущество — легко сойти за профессионального фотографа, изумив окружающих большими размерами объектива. Это, конечно же, шутка. На самом деле, качество объектива никак не зависит от его размеров. Теперь перейдем к недостаткам.

Planar

Оптическая схема Planar и пример фотографии, сделанной объективом Sony A 50mm f/1.4 Carl Zeiss

Planar – первая оптическая схема, созданная компанией Carl Zeiss в 1897 году. В основу схемы была положена конструкция телескопов, разработанная в начале 19 века Карлом Гауссом. Planar состоит из двух таких конструкций, симметрично повернутых друг к другу, а точно посередине между ними расположено отверстие диафрагмы. Название произошло от немецкого слова plan – «плоскость», что подчеркивает основное достоинство объектива – отсутствие деформации плоскости изображения по краям кадра. Также объективы Planar отличаются превосходным разрешением.

В постсоветском пространстве схема Planar хорошо знакома фотографам благодаря объективам Гелиос, сконструированных именно по этой схеме. Объективы Гелиос выпускаются до сих пор и пользуются спросом среди фотолюбителей из-за специфического «крученого» боке.

Самый легендарный Planar – объектив Carl Zeiss Planar 50mm f/0.7, один из самых светосильных в мире! Он был разработан в 1966 году специально для НАСА для съемки поверхности темной стороны Луны. НАСА заказала 6 таких объективов, и каждый экземпляр стоил американскому правительству около миллиона долларов. Позднее режиссер Стэнли Кубрик заказал бюджетную версию этого объектива для съемок фильма «Барри Линдон», чтобы снимать сцены только при свете свечей – для передачи аутентичной атмосферы эпохи. Всего в мире существует 10 экземпляров этого объектива.

Объектив Carl Zeiss Planar 50mm f/0.7 и снятый с его помощью кадр из фильма Барри Линдон

Biotar – дальнейшее развитие схемы Planar, получившее распространение с 20-х годов XX века. Схема Biotar похожа на Planar, но имеет продуманные отклонения от симметрии, что дало большой простор для доработок и бесконечное количество вариаций. Элементы в объективах Biotar перемещаются и объединяются в группы в самых разных комбинациях. Почти все современные светосильные зум-объектив со стандартным фокусным расстоянием 50-100mm сконструированы именно по схеме Biotar.

Краткий оптический экскурс

Чтобы успешно корректировать аберрацию, в конструкцию объектива придётся ввести дополнительные линзы, а это приведёт к утяжелению камеры. Также усложнение приведет к падению важного параметра — коэффициента светорассеяния. Ни к чему хорошему не приводит и увеличение диаметра линзы. Всё это напоминает замкнутый круг и действительно для любой характеристики объектива:

  • минимальной дистанции съемки;
  • угла поля зрения;
  • геометрического подобия объекта;
  • разрешающей способности.


В мире кинематографической оптики два важнейших открытия стали определяющими – электронно-вычислительные машины и оптическое просветление. До этого момента качественное изображение достигалось невероятными усилиями, поскольку аберрации были подлинными бичом кинематографа. Полвека назад расчет одного объектива мог отнимать у специалистов до шести месяцев личного времени. А порой этот процесс растягивался на несколько лет.

Но вот появились компьютерные технологии в паре с просветлением и заложили основы современной оптики.

Низкодисперсионные линзы

Модели со знаком SD имеют в своей конструкции низкодисперсионные линзы, роль которых минимизировать вторичный спектр, вызванный хроматическими аберрациями. Обычно в этих линзах используется стекло FK01 и FK02, которое и придает линзам дисперсионные качества. Низкодисперсионные линзы эффективны в объективах с длинным фокусным расстоянием от 200мм и более.

Что такое объектив с ИК-коррекцией?

Качественное видеонаблюдение 24 часа в сутки.

Современные технологии в сфере видеонаблюдения позволили представить на рынок безопасности высокочувствительные видеокамеры «DAY&NIGHT». Благодаря этим камерам стало возможным наблюдение в цветном изображении в дневное время и в черно-белом изображении в ночное время суток. А использование инфракрасной подсветки позволяет получить картинку в полной темноте. Однако, обычные объективы не имеют оптических способностей адаптировать фокус в зависимости от изменений условий освещенности.

Чтобы решить эту проблему Токина разработала ряд моделей объективов с ИК-коррекцией, совместимых с чувствительными камерами типа «DAY&NIGHT». Используя систему видеонаблюдения, включающую камеру «DAY&NIGHT» и объективы Токина с ИК-коррекцией больше не потребуется корректировать настройку фокуса при смене времени суток. Настроенный однажды объектив будет давать четкое изображение круглосуточно без дополнительной фокусировки объектива.

Относительное отверстие

Обычно объектив имеет два значения относительного отверстия — (1:F) или апертуры. Максимальное значение F — минимальное значение F; полностью открытая диафрагма — F минимально, максимальное F — диафрагма закрыта. Значение F влияет на выходное изображение. Малое F означает, что объектив пропускает больше света, соответственно, камера лучше работает в тёмное время суток. Объектив с большим F необходим при высоком уровне освещённости или отражения. Такой объектив будет препятствовать «ослеплению» камеры, обеспечивая постоянный уровень сигнала. Все объективы с автодиафрагмой используют фильтр нейтральной плотности для увеличения максимального F. Апертура (F) влияет так же и на глубину резкости.

Разборка

Разбирается блок с подсветкой так же примитивно, под серой наклейкой винт, фиксирующий крышки корпуса:

Толщина акрилового стекла сравнима с толщиной корпуса для компакт дисков, очень мягкая, надо с ней аккуратно обращаться:

Адаптер стандартный, на 12В / 1А:

Другие производители

Кроме перечисленных фирм, есть и другие, не менее известные производители кинематографической оптики. Их продукция заслуживает цикла отдельных статей, но обзорный формат не позволяет нам сильно растягивать повествование. Но обойти стороной эти компании мы не можем.

  • Fijinon. Один из ведущих производителей широкоугольных и вариообъективов, отличающихся рядом преимуществ (просветленная оптика, система внутренней корректировки и ручное управление).
  • Panavision. Выпускает объективы для 16 и 35-миллиметровых форматов, а также HD-видеокамер.
  • Thales Angenieux. Признанный мировой производитель, выпускающий оптику для цифрового и традиционного кино.
  • Vantage-film. Анаморфотные объективы этой немецкой компании отличаются непревзойденным качеством и истинно немецкой точностью построения изображений.

На этом я завершаю краткий экскурс во вселенную кинематографической оптики. Если статья вызовет интерес у посетителей сайта, я не исключаю возможность более подробного описания некоторых фирм-производителей и линеек предлагаемой ими продукции.

Подготовил: МОСКит

Задний и фланцевый рабочий отрезок объектива

Задний рабочий отрезок — расстояние между последним оптическим элементом в группе линз объектива и плоскостью формирования изображения Фланцевый рабочий отрезок — расстояние между фланцевой поверхностью объектива (поверхность объектива, которая соприкасается с камерой) и плоскостью формирования изображения.

Линзы объектива

Линзы объектива делают из специальных сортов оптического стекла или оптической пластмассы. Создание линз одно из самых дорогостоящих операций создания фотокамеры. В сравнении стеклянных и пластмассовых линз стоит отметить, то пластмассовые линзы дешевле и легче. В настоящее время большинство объективов недорогих любительских компактных камер изготавливается из пластмассы. Но, такие объективы подвержены царапинам и не так долговечны, примерно через два-три года они мутнеют, и качество фотографий оставляет желать лучшего. Оптика камер подороже изготавливается из оптического стекла.

В настоящее время большинство объективов компактных фотокамер изготавливается из пластмассы.

Между собой линзы объектива склеивают или соединяют при помощи очень точно рассчитанных металлических оправ. Склейку объективов можно встретить намного чаще, нежели металлические оправы.

Рабочий отрезок и задний фокус (Flange Distance and Back Focal Length)

Рабочий отрезок (flange distance) — расстояние от плоскости, на которую крепится объектив до фокальной плоскости (в воздухе). Для переходника C-mount это расстояние равно 17,526 мм (0,69″), а для переходника типа CS-mount это расстояние равно 12,526 мм (0,493″). Резьба CS-mount и C-mount имеет диаметр 25,4 мм (1″) и шаг 0,794 мм (1/32″). Рабочий отрезок для крепления М42х1 равен 45,5 мм.

Задний фокус (back focal length) — расстояние межу вертексом крайней линзы и сенсором.

Увеличение системы видеокамера-монитор (Camera to Monitor Magnification)

Формат камеры Размер монитора (по диагонали) в дюймах
9″ 14″ 15″ 18″ 20″ 27″
1/4″ 57.2X 88.9X 95.3X 114.3X 127X 171.5X
1/3″ 38.1X 59.2X 63.5X 76.2X 84.6X 114.1X
1/2″ 28.6X 44.5X 47.6X 57.2X 63.5X 87.5X
2/3″ 20.8X 32.3X 34.6X 41.6X 46.2X 62.3X
1″ 14.3X 22.2X 23.8X 28.6X 31.8X 42.9X

Производители оптики для кино

Сейчас мы понимаем, что многообразие съемочной оптики – жизненная необходимость. Фокусная линейка настолько обширна, что можно получать качественное изображение львиного прайда, снятого на большой дистанции, либо вести съемки диалогов в узком коридоре или кабине лифта, где необходим крупный ракурс и широкоугольный объектив.

Ниже мы пробежимся по продукции крупнейших производителей отечественной и зарубежной оптики, что поможет вам в выборе оптики для конкретных задач, поставленных режиссером.

Оптика-Элит

Обзор мы начнем с крупнейшего российского производителя объективов, чья продукция соответствует мировым стандартам, а порой даже и превосходит зарубежные аналоги.

  • S35 мм. Эта линейка насчитывает 18 образцов, характеризующихся отличным дизайном, мягким ходом и высокими оптическими параметрами. К отдельным моделям фирма наладила выпуск анаморфотных насадок, предназначенных для съемок в широкоформатном режиме.
  • Анаморфотные объективы. Выпускаются для широкоэкранного кино и насчитывают 11 моделей.
  • S16. Сюда входит 12 малогабаритных объективов, которые считаются идеальными для сериалов, музыкальным клипов и рекламных роликов.
  • Объективы для электронного кино. Их всего семь, но каждая модель предоставляет широкие возможности для перефокусировки и подфокусировки, удерживая при этом размер кадрового окна.

«Оптика-Элит» выпускает уникальный объектив обратной перспективы, не имеющий аналогов в мировой киноиндустрии.

Canon

Пожалуй, самой прогрессивной линейкой этой фирмы является HD-Prime FJs. Многослойное покрытие здесь сочетается с оригинальной конструкцией и высокими оптическими характеристиками. Изображения выходят четкими и контрастными. Также оператор получает хорошую цветопередачу.


Серия HD-EC Zoom включает три модели, в которых применяются стекла со сверхнизкой и анормальной дисперсией, а также искусственным флюоритом. Хроматические аберрации таким образом сводятся к минимуму.

Carl Zeiss/ARRI

Данная компания специализируется на объективах для традиционного и цифрового кино. Стоит выделить следующие линейки этого производителя:

  • Ultra Prime. Отличное решение для 35-миллиметрового формата. Качество сохраняется при съемках сцена с различными расстояниями фокуса, контрастностью и разрешением. Все объективы этой марки характеризуются прочностью, надежностью, равномерными уровнями яркости и контрастности.
  • Master Prime. И вновь – формат 35 мм. Асферические поверхности, специальные стекла, улучшенное покрытие позволили добиться существенного роста светосилы и прочих характеристик.
  • Ultra 16. Это – так называемая дискретная оптика, скомпонованная из широкоугольных объективов. Главные преимущества – повышенная контрастность, улучшенная цветопередача, низкий уровень засветок, искажений и бликов.
  • DigiPrime. Эта линейка предназначена для цифрового кинематографа и насчитывает 9 моделей. Все объективы оборудованы шкалами фокусировки и отличаются эргономичным дизайном.

Cooke

Это английский производитель, спектр продукции которого достаточно широк. В объективах этой фирмы применяется многослойное покрытие, что позволяет получить теплые и мягкие тона. Данный эффект кинематографисты называют look Cooke. Компания предлагает следующие линейки объективов:

  • S4/i Prime;
  • Cooke SK4 Prime;
  • S4 HD Zoom (для цифрового кино).

Какой объектив выбрать?

В конце хочется отметить, что подбор оптики для каждого фотографа дело интимное и индивидуальное. Наверное, самым разумным советом будет испробовать все на практике. Если вы решили приобрести фикс, то сначала попробуйте потестировать зум на предмет того, с каким фокусным расстоянием вам будет комфортнее всего работать. И только тогда делайте выбор.

Мы рекомендуем составлять линейку оптики с определённым шагом, не приобретая оптику с похожим фокусным расстоянием. Примеры рекомендуемых линеек:

  • 1-я 24мм (пейзаж), 50мм (жанр), 100мм (портрет + макро)
  • 2-я 35мм (пейзаж + жанр), 85мм (портрет)
  • 3-я (бюджетный вариант) только 50мм.

Характеристики

С сайта продавца выглядят так:
1. 144 белых светодиода 2. Интенсивное и сфокусированное освещение без теней 3. Яркость 0-100% регулируемая, высокая яркость 4. Вход питания: 100-240 В, 50-60 Гц 5. Подходит для диаметра объектива: 30-60 мм

Когда я выбирал свет, менеджер магазина посоветовали брать именно его, как альтернатива бюджетному свету.

Детали объектива фотоаппарата

Объективы фотоаппаратов сильно различаются по многим параметрам: от длины и возможностей масштабирования до дополнительных функций, таких как стабилизация изображения. Однако все объективы камеры имеют одинаковую базовую структуру и элементы. Понимание каждого из этих элементов может помочь вам узнать, как работает ваше фотооборудование и на что обращать внимание при покупках.

Оптическая линза

На передней части объектива камеры есть стеклянная линза, которая фокусирует свет в корпус камеры и на пленку.Внутри корпуса есть несколько других оптических линз, которые дополнительно улучшают изображение. Эти линзы иногда называют «элементами».

Резьба фильтра

Перед первой оптической линзой есть небольшое кольцо с нарезанной резьбой. Эти резьбы позволяют легко прикреплять фильтры и другие аксессуары к передней части объектива.

Каждая линза имеет второй миллиметр («мм» — например, от 49 до 77 мм), который указывает диаметр этой передней точки крепления.Вам нужно будет купить фильтры, крышки объектива и другие аксессуары для объектива, используя размер, предназначенный для этого конкретного объектива.

Кольцо фокусировки

У каждой линзы есть кольцо фокусировки. Это часть объектива, которая вращается, чтобы фотограф мог сфокусировать изображение. В автоматических камерах это кольцо перемещается небольшим мотором внутри объектива, когда вы нажимаете кнопку спуска затвора наполовину. Для ручной фокусировки поворачивайте кольцо до тех пор, пока изображение не окажется в фокусе.

Кольцо фокусировки обычно помечено ведущими числами, показывающими, как далеко находится объект, когда он сфокусирован. Вы также заметите диафрагму на этой шкале, которая показывает полный диапазон дистанции фокусировки. Другими словами, объекты в этом диапазоне попадут в фокус с использованием этого конкретного значения диафрагмы.

Кольцо фокусного расстояния

Каждый объектив с возможностью увеличения имеет кольцо фокусного расстояния. Это кольцо позволяет увеличивать или уменьшать масштаб объекта.

Линзы часто описываются их фокусным расстоянием.Например, объектив можно назвать объективом 70–300 мм. Это означает, что объектив может увеличиваться от 70 мм до 300 мм.

Кольцо диафрагмы

Кольцо диафрагмы на объективе позволяет фотографу управлять диафрагмой внутри объектива. Эти настройки отмечены на объективе с помощью диафрагмы. На автоматических камерах диафрагмой можно управлять только через настройки диафрагмы корпуса камеры.

Диафрагма

Диафрагма — это регулируемое отверстие в линзе, через которое свет попадает на пленку или цифровую поверхность.Размер диафрагмы измеряется установкой диафрагмы.

Большее отверстие диафрагмы (например, f / 2,8, f / 3,5, f / 4,0) приводит к меньшему количеству света, необходимому для экспонирования изображения, и меньшей глубине резкости (меньшая часть вашего изображения находится в фокусе). Меньшее отверстие диафрагмы (например, f / 11, f / 16, f / 22) приводит к большему количеству света, необходимому для экспонирования изображения, и большей глубине резкости (больше в фокусе).

Крепление объектива

Крепление объектива представляет собой металлическую поверхность, которой придана определенная форма, чтобы соответствовать конкретному типу корпуса камеры.Каждый производитель камеры использует различную конструкцию крепления объектива. Некоторые за прошедшие десятилетия меняли крепления объектива, поэтому старые объективы с ручным управлением не подходят для новых зеркальных и цифровых зеркальных фотоаппаратов. При покупке объективов убедитесь, что крепление соответствует вашей камере.

Объектив прикрепляется к камере за кольцо крепления объектива путем совмещения небольших точек на корпусе камеры и объективе. Затем линза осторожно поворачивается на место. Крепление объектива также содержит контакты, которые совпадают с контактами на кольцевом креплении объектива, чтобы камера могла управлять объективом.

Анатомия линзы

Это Раздел 1.1 Руководства по ресурсам для обработки изображений.

Линза формирования изображения также известна как линза машинного зрения, линза объектива или объектив, или просто линза. Для простоты линза для визуализации будет уменьшена до линзы в следующих разделах.


Рисунок 1: Схема линзы.

Следующие ниже термины объясняют каждую из характерных частей объектива для визуализации и связывают эти термины с фундаментальными свойствами систем визуализации, описанными в следующем разделе.

  • Кольцо регулировки фокуса: Вращение меняет место, где объектив фокусируется лучше всего. Расстояние от первой поверхности до объекта называется рабочим расстоянием.
  • Кольцо регулировки диафрагмы / диафрагмы: Вращение изменяет размер диафрагмы внутри объектива и, следовательно, число F (f / #). Помимо управления общим количеством света, который может проходить через объектив, f / # оказывает множество других критических эффектов на характеристики объектива.
  • Винты с накатанной головкой: Используются для временной фиксации фокуса и / или диафрагмы на месте для предотвращения нежелательных настроек.
  • Информация об объективе: Информация об объективе нанесена на тубус объектива и обычно содержит фокусное расстояние, минимальное f / #, номер детали и производителя объектива.
  • Диапазон рабочих расстояний: Это указанный диапазон рабочих расстояний, на которых объектив может фокусироваться. Иногда это называют диапазоном расстояний до объекта.
  • f / # Отметки: Отметки на оправе объектива, обозначающие место поворота кольца регулировки диафрагмы для работы объектива при определенном значении f / #.
  • Резьба фильтра: Сюда могут быть навинчены фильтры машинного зрения, если первый элемент не выступает из оправы объектива. Если первый элемент выступает за оправу объектива или если это широкоугольный объектив, может потребоваться дополнительный адаптер.
  • Крепление камеры: Здесь объектив навинчивается на камеру или устанавливается на нее.Типичными креплениями являются C-Mount, F-Mount, TFL-Mount и S-Mount. Для получения дополнительной информации см. Крепления объектива.
  • Задний выступ: Это расстояние от плеча объектива, на которое он выступает в камеру. Следует проявлять осторожность, чтобы не создавать помех фильтрам, отсекающим ИК-излучение, или электронике внутри крепления камеры.
  • Первая поверхность: Первая поверхность может быть либо первой оптической линзой, если смотреть на нее выступающей из оправы объектива, либо самой оправой объектива.Рабочее расстояние определяется как расстояние от этой поверхности до объекта.
  • Последняя поверхность: Последняя поверхность может быть либо последней оптической линзой перед датчиком, либо самой оправой объектива.
  • Плечо объектива: Это поверхность объектива, которая контактирует с фланцем камеры.
  • Общая длина: Общая длина линзы — это расстояние от первой поверхности до плеча линзы.Обычно крепление для камеры не входит в комплект, так как оно будет прикреплено к камере.
  • Расстояние между фланцами: Расстояние от монтажного выступа до плоскости изображения. Это расстояние между объективом и камерой обычно стандартизировано для различных типов крепления, чтобы обеспечить совместимость.
  • Плоскость изображения: Место, где линза формирует изображение, обычно датчик камеры.

Рекомендуемые ресурсы

Технический инструмент

Объективы

101 — Знакомство с объективами фотоаппаратов

Красивое оптическое чудо, которым является ваш объектив фотоаппарата, многие из нас иногда принимают как должное.Мы протираем драгоценные стекла рубашками или поспешно бросаем их в сумки для фотоаппаратов, изгибаясь во время смены объектива на ходу. Действительно, наши объективы — это ворота в душу нашей фотографии. Но что мы действительно знаем о наших линзах?

Это правда, некоторые из вас знают толк в линзах, браво вам! Но есть и другие, которые только начинают работать, и которым нужна небольшая помощь, чтобы разобраться во всех терминах и путанице, которые возникают, когда пробираются сквозь мрачный мир объективов фотоаппаратов.

Эта статья протянет вам руку помощи, предложив некоторую общую информацию, которая поможет вам разобраться в некоторых вещах, с которыми вы можете столкнуться при использовании объективов фотоаппаратов. Если вы полный новичок и изо всех сил пытаетесь понять все эти цифры на передней части объектива, это будет своего рода урок «Объективы 101» и отличная отправная точка. Если вы опытный стрелок, то, возможно, эта информация станет отличным небольшим курсом повышения квалификации. В любом случае, вы попали в нужное место!

Базовая анатомия линзы

Линзы занимают пространство удивительной двойственности.Это простые конструкции с набором стеклянных элементов, расположенных в определенном порядке, чтобы свет проходил от одного конца к другому и, в конечном итоге, попадал в вашу камеру. В то же время линзы фотоаппаратов — ЧРЕЗВЫЧАЙНО сложные элементы оптической инженерии, которые можно было бы рассматривать как проводники магических способностей (помните, в какую проблему попал Галилей?). Тем не менее, все объективы фотоаппаратов имеют общие основные компоненты. Вот несколько основных частей, которые вам нужно понять

Ствол объектива

Фактически корпус в форме трубки, который удерживает все внутренности объектива, называется тубусом или корпусом объектива.Он может быть изготовлен из самых разных материалов, от пластика до металлов. Как правило, конструкция оправы объектива определяет прочность объектива и его устойчивость к элементам

Элементы объектива

Внутри тубуса находятся элементы объектива. Это оптическая рамка объектива, которая фокусирует и направляет свет, попадающий на переднюю часть объектива, в камеру. Практически всегда они сделаны из стекла разного качества. Конфигурация элементов определяет фокусный диапазон объектива и, следовательно, возможности самого объектива по созданию изображения.

Штык-нож

Конец объектива, который крепится к корпусу камеры, называется байонетом (или креплением). Байонет объектива подходит для определенных типов и марок фотоаппаратов. Думайте о штыке как о ключе, а о камере как о замке.

Кольцо зума

Кольцо масштабирования — это то, что вы поворачиваете для увеличения или уменьшения изображения с помощью объектива. Он является частью оправы объектива и может иметь различный вид. Кольцо зуммирования имеется только на зум-объективах.

Кольцо фокусировки

Практически все объективы фотоаппаратов (объективы со сменными объективами, такие как зеркальные и беззеркальные фотоаппараты) имеют кольцо, которое можно использовать для ручной настройки фокуса объектива.Кольца фокусировки присутствуют как на объективах с автофокусировкой, так и на объективах с полностью ручной фокусировкой. В отличие от кольца масштабирования, кольцо фокусировки влияет только на расстояние фокусировки изображения, а не на фокусное расстояние. Кольцо фокусировки обычно расположено непосредственно спереди или сзади кольца зума на тубусе объектива.

Кольцо диафрагмы

Имеющееся на многих старых объективах с полностью ручным управлением, кольцо диафрагмы регулирует размер отверстия в объективе в зависимости от выбранной вами «диафрагмы». Кольцо диафрагмы обычно расположено на оправе объектива рядом с байонетом.

Лепестки диафрагмы

Лепестки диафрагмы расположены внутри объектива и регулируют размер отверстия (диафрагмы), через которое свет попадает в камеру. Лепестки диафрагмы управляются либо электронным способом с помощью выбора, сделанным на камере, либо вручную фотографом с помощью кольца диафрагмы на оправе объектива.

Другие термины, с которыми вы можете встретиться

Фокусное расстояние

Это термин, который, честно говоря, может быть настолько сложным или простым, насколько вы захотите.Физически фокусное расстояние — это расстояние между приемником изображения вашей камеры (цифровым датчиком или пленкой) и точкой, где свет, попадающий в объектив, сходится, заставляя изображение выглядеть в фокусе (обычно в центре оправы объектива). Это расстояние обычно измеряется в миллиметрах, например 50 мм, 200 мм и т. Д.

По мере увеличения фокусного расстояния увеличивается и зум объектива. Вот почему широкоугольные объективы называются короткофокусными, а телеобъективы — «длинными».

Скорость линзы

Термин «скорость» встречается в некоторых аспектах фотографии. Что касается линз, то под светосилой понимается максимальный размер диафрагмы, возможный для конкретного объектива. Это означает, насколько хорошо объектив работает в условиях низкой освещенности. Объектив с максимальной диафрагмой f / 2,8 считается «быстрее», чем объектив с максимальной диафрагмой f / 4 и так далее. Поскольку диафрагма f / 2,8 больше, чем диафрагма f / 4, это, следовательно, позволяет снимать с более высокой скоростью затвора — так получен этот термин.

Искажение линзы

Искажение объектива — это всего лишь искажение фотографии, вызванное особенностями элементов объектива. Как правило, чем короче фокусное расстояние объектива, тем больше искажение. Изображение кажется выпуклым, а воспринимаемый размер объектов в объективе искажен.

Хроматическая аберрация

Этот термин вы встретите, читая множество обзоров объективов. Хроматическая аберрация — это оптическое явление, при котором разноцветные полосы появляются на краях объектов в пределах сцены (обычно на краю кадра).Обычно аберрация возникает, когда объекты на фотографии сильно контрастируют. Это вызвано тем, что объектив не точно фокусирует все три цвета (красный, зеленый и синий) в одной и той же точке, и чаще всего встречается с комплектными или более дешевыми объективами.

Кома

Это еще одно оптическое проявление, присущее многим объективам из-за формы и незначительного несовпадения самих элементов объектива. Кома — это искажение мелких световых точек на изображении, из-за чего они кажутся удлиненными.Если вы планируете снимать много ночного неба и звезд, количество комы, производимой объективом, должно быть минимальным.

Боке

Произведенное от японского слова «бокэ», которое означает размытие или дымка, боке описывает степень и характеристики размытия фона, создаваемого объективом камеры. Боке часто очень важно для фотографов-портретистов при съемке с очень широкой диафрагмой.

Два основных типа объективов для фотоаппаратов

линзы с постоянным фокусным расстоянием

Объективы, которые не увеличивают и не уменьшают масштаб и используют только фиксированное фокусное расстояние, называются «основными».Объективы с постоянным фокусным расстоянием обычно имеют меньшее количество линз и поэтому обычно меньше, чем зум-объективы. Иногда объективы с фиксированным фокусным расстоянием, которых избегают из-за их фиксированного диапазона фокусных расстояний, находят применение даже у фотографов-любителей (на самом деле никогда не уходили) из-за их, возможно, более высоких характеристик с точки зрения резкости и скорости по сравнению с ценой.

Зум-объективы

Объективы, которые могут работать на нескольких фокусных расстояниях, называются зум-объективами. Это облегчается за счет перемещения элементов объектива ближе или дальше друг от друга внутри оправы объектива с помощью кольца масштабирования.Однако дополнительная гибкость переменного фокусного расстояния часто означает, что зум-объективы больше и тяжелее, чем объективы с фиксированным фокусным расстоянием.

Разбирая числа

F-стопоры

Когда дело доходит до диафрагмы, возникает много недоразумений и путаницы, потому что это утомительное и несколько сложное понятие. В простейшем случае термин диафрагма — это просто соотношение между размером отверстия в объективе и фокусным расстоянием.

Для наших целей диафрагма связана со светосилой объектива.На большинстве объективов диапазон диафрагмы объектива указывается в диафрагмах, например, f / 3,5–5,6 или f / 2,8. Следует помнить, что диафрагма работает вразрез с общей логикой, означающей, что чем меньше диафрагменное число, тем БОЛЬШЕ максимальный размер отверстия объектива.

Размер фильтра

Фильтры — это обычное фотооборудование, и у большинства объективов есть резьба на передней части корпуса для установки различных типов фильтров. Однако линзы имеют разный диаметр, и поэтому для каждой требуется фильтр определенного размера.Размер фильтра объектива измеряется в миллиметрах и, как правило, печатается на передней части большинства линз, обозначенной знаком «Ø», за которым следует размер (вы также можете найти его внутри задней части крышки объектива). Размер фильтра также полезен при поиске сменных крышек объектива.

В конце

Как и все, знание — сила. Чем больше вы знаете, тем больше вероятность того, что вы примете более правильные решения, которые, в свою очередь, приведут к лучшим результатам для вашей фотографии. Понимание основ объективов для фотоаппаратов и их общей терминологии будет иметь большое значение, чтобы помочь вам стать лучшим фоторедактором, которым вы можете быть.

Если у вас есть другие вопросы по линзам, задавайте их в разделе комментариев ниже.

элементов и групп линз: что лучше?

Когда дело доходит до современных технологий, кажется, что чем больше, тем лучше. Например, в последние годы наша компьютерная терминология изменилась с мегабайт на гигабайты, а теперь и на терабайты. В мире цифровой фотографии фотографов всегда привлекает большее количество мегапикселей, больше кадров в секунду и более высокие значения ISO.Однако в области линз не всегда ясно, что чем больше, тем лучше.

Читая об объективах, вы можете заметить список с количеством элементов и количеством групп, которые имеет каждый объектив. «Элементы» — это отдельные стеклянные элементы объектива внутри самого объектива, а «группы» — это либо отдельные элементы, либо два или более элементов, соединенных вместе. Например, объектив с шестью элементами, два из которых соединены вместе, будет иметь шесть элементов и пять групп. В целом, хотя большее количество элементов может лучше контролировать оптические дефекты, каждая дополнительная площадь поверхности может вызывать отражения и рассеяния, которые могут привести к бликам и снижению контрастности.

Итак, когда дело доходит до элементов и групп линз, действительно ли больше лучше? Ниже мы рассмотрим несколько линз, отмеченных обозревателями и пользователями как хорошие или плохие, и посмотрим, сколько групп и элементов есть у каждой из них.

Но , если вам нужен быстрый ответ — наличие большего количества элементов и групп не означает, что объектив лучше ИЛИ хуже.

Хорошее:

Canon 70-200mm f / 4L IS (20 элементов и 15 групп)
Этот объектив известен своей резкостью, быстрой фокусировкой и отличным качеством изображения.Многие фотографы Canon клянутся этим, называя его одним из лучших зумов, которые они когда-либо использовали. Он также имеет наибольшее количество элементов, групп и линз, обсуждаемых здесь.

Nikon 14-24mm f / 2.8 (14 элементов и 11 групп)
Еще один объектив, известный своей резкостью и минимальной мягкостью по краям. Пользователям Nikon, которые ищут отличный широкоугольный объектив, часто советуют не искать дальше.

Sigma 50mm f / 1.4 DG (13 элементов в 8 группах)
Этот объектив был долгожданным, и многие говорили, что он того стоит. Этот объектив с постоянным фокусным расстоянием известен сверхчеткостью и быстрой автофокусировкой.Он также имеет наименьшее количество элементов и групп линз, обсуждаемых в этой категории.

Плохой:

Canon EF 55-200mm f / 4.5-5.6 II USM (12 элементов и 10 групп)
Помимо плохого качества сборки, многие обозреватели отметили неутешительную резкость и заметное виньетирование этого объектива.

Nikon 24-120mm f / 3.5-5.6 AF-S VR (15 элементов и 13 групп)
Многие сетовали на мягкость этого объектива и его темные углы (виньетирование).У него больше элементов и групп, чем у двух из трех лучших линз, упомянутых выше.

Tamron SP 200-500mm f / 5-6.3 Di (13 элементов и 10 групп)
Несмотря на то, что этот объектив является привлекательным для многих фотографов-любителей и фотографов среднего уровня из-за его стоимости и дальности действия, он известен своей медлительностью и плохой автофокусировкой. и даже худшее качество изображения.

Заключение

Если вы хотите провести корреляцию между количеством элементов объектива и группами, связанными с качеством объектива, на самом деле нечего делать.Увидев, что высоко оцененный Canon 70-200mm имеет 20 элементов и 15 групп, вы можете подумать, что чем больше, тем лучше, Nikon 50mm f / 1.4G также является высоко оцененным объективом с 8 элементами и 5 группами. Пять из шести линз, описанных выше, имеют примерно одинаковое количество элементов и групп, но три считаются плохими. Итак, когда дело доходит до качества линз и их элементов, больше не обязательно лучше.

Сравнение человеческого глаза и камеры

Человеческий глаз — замечательный инструмент, основанный на преломлении и линзах для формирования изображений.Между человеческим глазом и фотоаппаратом есть много общего, в том числе:

  • диафрагма для управления количеством света, проходящего через линзу. Это затвор фотоаппарата и зрачок в центре радужной оболочки человеческого глаза.
  • линза для фокусировки света и создания изображения. Изображение реальное и перевернутое.
  • способ восприятия изображения. В фотоаппарате для записи изображения используется пленка; в глазу изображение фокусируется на сетчатке, а система палочек и колбочек является передним концом системы обработки изображений, которая преобразует изображение в электрические импульсы и отправляет информацию по зрительному нерву в мозг.

Способ фокусировки света глазом интересен, потому что большая часть рефракции, которая происходит, происходит не за счет самого хрусталика, а за счет водянистой влаги, жидкости на поверхности хрусталика. Свет преломляется этой жидкостью, когда попадает в глаз, немного больше преломляется хрусталиком, а затем еще немного стекловидным телом, желеобразным веществом, заполняющим пространство между хрусталиком и сетчаткой.

Однако объектив имеет решающее значение для формирования резкого изображения; Это одна из самых удивительных особенностей человеческого глаза, которая может так быстро настраиваться при фокусировке объектов на разных расстояниях.Этот процесс адаптации известен как приспособление.

Рассмотрим уравнение линзы:

1 / f = 1 / d i + 1 / d o

Объектив с камерой имеет фиксированное фокусное расстояние. Если расстояние до объекта изменяется, расстояние до изображения (расстояние между объективом и пленкой) регулируется перемещением объектива. Человеческий глаз не может этого сделать: расстояние изображения, расстояние между линзой и сетчаткой глаза фиксировано. Если расстояние до объекта изменяется (т.е.е., глаз пытается сфокусировать объекты, находящиеся на разном расстоянии), затем фокусное расстояние глаза регулируется для создания четкого изображения. Это делается за счет изменения формы линзы; Эту работу выполняет мышца, известная как цилиарная мышца.

Коррекция близорукости

Близорукий человек может создавать четкие изображения только близких предметов. Объекты, расположенные дальше, выглядят нечеткими, потому что глаз фокусирует их на точке перед сетчаткой.

Чтобы исправить это, линзу можно поместить перед глазом. Какой объектив нужен?

  1. А собирающая линза
  2. Расходящаяся линза

Нам нужна расходящаяся линза, чтобы рассеивать световые лучи ровно настолько, чтобы, когда лучи сходятся глазом, они сходились на сетчатке, создавая сфокусированное изображение.

Коррекция дальнозоркости

Дальновидный человек может создавать четкие изображения только далеких объектов.Близкие объекты фокусируются за сетчаткой, поэтому выглядят нечеткими.

Какой объектив нужен, чтобы это исправить?

  1. А собирающая линза
  2. Расходящаяся линза

Используется собирающая линза, позволяющая резкость изображения на сетчатке.

Присмотритесь к частям глаза

При опросе о пяти чувствах — зрении, слухе, вкусе, обонянии и осязании — люди постоянно сообщают, что их зрение — это способ восприятия, который они ценят (и боятся потерять) больше всего.

Несмотря на это, многие люди плохо понимают анатомию глаза, как работает зрение и проблемы со здоровьем, которые могут повлиять на глаза.

Прочтите основное описание и объяснение структуры (анатомии) ваших глаз и того, как они работают (функционируют), чтобы помочь вам ясно видеть и взаимодействовать с вашим миром.

Как работает глаз

Во многих отношениях человеческий глаз работает так же, как цифровая камера:

  1. Свет в основном фокусируется на роговице — прозрачной передней поверхности глаза, которая действует как объектив камеры. .

  2. Радужная оболочка глаза действует как диафрагма фотоаппарата, регулируя количество света, попадающего в заднюю часть глаза, путем автоматической регулировки размера зрачка (диафрагмы).

  3. Хрусталик глаза расположен непосредственно за зрачком и дополнительно фокусирует свет. Через Этот процесс, называемый аккомодацией, помогает глазу автоматически фокусироваться на близких и приближающихся объектах, как объектив камеры с автофокусировкой.

  4. Свет, сфокусированный роговицей и хрусталиком (и ограниченный радужной оболочкой и зрачком), затем достигает сетчатки — светочувствительной внутренней оболочки задней части глаза.Сетчатка действует как электронный датчик изображения цифровой камеры, преобразуя оптические изображения в электронные сигналы. Затем зрительный нерв передает эти сигналы в зрительную кору — часть мозга, которая контролирует наше зрение.

Анатомия человеческого глаза (вид сверху)

Для получения более подробной информации о конкретных структурах глаза и о том, как они функционируют, посетите эти страницы:

А для описания общих проблем со зрением см. Refraction and Refractive Errors: How Глаз видит.

ПРОЧИТАЙТЕ СЛЕДУЮЩИЙ : Космос изменяет ваши глаза довольно неестественным образом

Страница опубликована в феврале 2019 г.

Страница обновлена ​​в октябре 2021 г.

Анатомия микроскопа

Введение

По своей сути типичный микроскоп по сути, это коробка, предназначенная для размещения двух линзы в точных положениях, чтобы можно было точно увеличивать свет от образец на детектор .Первая из этих двух линз линза объектива , — расположен близко к образцу, перемещается при повороте шкалы фокусировки и имеет полезную информацию, такую ​​как увеличение , написанное на его стороне. В второй обычно называют трубкой / коллектором линза , которая находится глубоко внутри микроскопа и редко видимый.

Как и эти линзы, состоит из:

микроскопов
  • Источники света , такие как лампа или лазер
  • Детектор , как правило, научная камера
  • Окуляр , бинокулярное устройство, предназначенное для непосредственного наблюдения человека пользователем за образцом
  • Столик для образца для установки / установки на
  • Механические элементы управления , такие как диафрагмы, фильтры, шкалы, для управления световым путем или положением линз
  • Цифровые элементы управления , такие как программное обеспечение микроскопа, где такие факторы, как экспозиция или полем обзора можно управлять
  • Дополнительные линзы / зеркала для дальнейшего управления световым путем

Эти компоненты отвечают за увеличение , разрешение , поле зрения и , присущие микроскопу.В этой статье подробно описаны компоненты микроскопа и анатомия в связи с тем, как они способствуют получению наилучшего возможного изображения. Чтобы увидеть расположение этих компонентов, см. Рис.1 .

Рис. 1: Изображение в разрезе современного микроскопа. Есть два независимых пути освещения; 1) Epi-освещение , отраженное через линзу объектива, чтобы осветить образец сверху, 2) Просвечивание , сфокусированное отдельной конденсорной линзой, чтобы осветить образец вдоль оси изображения микроскопа.Существует единый путь формирования изображения для света от образца, через объектив и линзы трубки в детектор / камеру или окуляр. Получено из изображения микроскопа на праймере Olympus Microscopy Primer и изменено автором.

Линзы

Линза — это оптическое устройство , которое может отражать свет. Отражение зависит от формы линзы, которая обычно бывает выпуклой или вогнутой . Для целей микроскопии используются выпуклые линзы из-за их способности фокусировать свет в одной точке.Так устроен человеческий глаз: выпуклая биологическая линза фокусирует свет на задней части глаза, где палочки и колбочки могут его обнаружить. Микроскопы позаимствовали эту идею, используя выпуклые линзы для фокусировки света в точку, находящуюся на расстоянии f от линзы. Это расстояние известно как фокусное расстояние линзы и зависит от формы. Формы линз можно увидеть на Рис.2 . Следует отметить, что эти линзы симметричны и одинаково влияют на свет с любого направления.

Фокусное расстояние микроскопа линза объектива должна быть очень маленькой, так как объектив часто находится очень близко к пример. Как правило, чем больше увеличение, тем ближе объектив должно быть.

Рисунок 2: Выпуклые и вогнутые линзы. Выпуклая линза толще в центре, чем по краю, и фокусирует луч света в точку на определенном расстоянии перед линзой (фокусное расстояние). Вогнутая линза — наоборот, она толще по краю, чем в центре, и рассеивает луч света.В микроскопах используются выпуклые линзы для фокусировки света. Изображение с http://clubsciencekrl.blogspot.com/.

Объективы микроскопа содержат линзы, но не такие простые, как линзы, показанные на Рис.2 , что делает их сложными линзами ( Рис. 3A ). Хотя общий эффект может заключаться в увеличении, эти линзы тщательно спроектированы для управления различными аспектами линз, такими как рабочее расстояние , и способность исправлять такие проблемы, как аберрации , .Объективы характеризуются двумя факторами: увеличением и числовой апертурой (NA) . Увеличение объектива варьируется от 2x до 100x (в сочетании с увеличением окуляра), увеличивая образец в 2–100 раз соответственно ( Рис. 3B ). ЧА связана с фокусным расстоянием объектива, а именно с тем, под каким углом свет выходит / входит в объектив, так как это влияет на разрешение ( Рис. 3C , подробнее читайте в примечании к приложению о разрешении и ЧА). См. Рис.3 для получения дополнительной информации.

Рисунок 3: На линзах объектива микроскопа. А) Пример расположения линз в поперечном сечении объектива, что делает линзу сложной. Б) Различные объективы Nikon Super Fluor, от 10x до 40x. Красные прямоугольники показывают увеличение / числовую апертуру объектива, при этом 40-кратный воздух имеет числовую апертуру 0,90, а масляная иммерсионная 40-кратная числовая апертура равна 1,30, демонстрируя влияние среды визуализации на числовую апертуру (чем плотнее, тем лучше). C) Как различная числовая апертура влияет на освещенность образца, чем выше числовая апертура, тем больше угол падения света от объектива и тем выше максимальное разрешение.

Ограничители поля и диафрагмы

Всегда есть ограничения для область, которую необходимо отобразить, и подробную информацию, предоставляемую микроскопом. Там физических блоков в свете путь, обычно называемый упоров , диафрагмы или апертуры . Здесь будет использоваться термин «стоп». Для пути изображения они могут или не могут регулироваться пользователем, но, как обсуждается позже, концепции применимы к осветительной оптике.

Ограничитель диафрагмы — это часть системы формирования изображения, которая ограничивает диапазон углов света, которые линза может собирать с образца.Этот диапазон углов определяет числовую апертуру линзы и, следовательно, разрешение системы, способность определять два объекта как разные. Большинство объективов микроскопов сконструированы таким образом, что диафрагмой является задняя апертура объектива , как показано на Рис. 3A . Это гарантирует, что цель определяет разрешение системы и что разрешение будет одинаковым по всему полю обзора.

Полевой упор ограничивает область изображения. Это не может быть больше диаметра линзы трубки .В лучшем случае отображаемая область — это диаметр этой линзы, деленный на увеличение. Если внутренняя линза имеет диаметр 25 мм, и увеличение 100x , вы должны увидеть круг диаметром 250 мкм образца. Такие вещи, как элементы, изменяющие свет, или сам детектор, могут легко уменьшить собираемое поле обзора.

Детекторы

Окуляры

На выходе большинства микроскопов получается изображение примерно 2 см в поперечнике, поэтому обычно его увеличивают в раз, чтобы заполнить поле зрения глаз. Окуляры , еще одна система увеличения, дает 10-30-кратное увеличение сверх того, которое обеспечивается объективом и микроскопом. В сочетании с линзой в глазу это увеличивает изображение до сетчатки в удобном масштабе, так что человеческий глаз может различать и наблюдать объекты даже размером с клетки (~ 10 мкм).

Научные камеры

Есть все виды фотоаппаратов который можно использовать с микроскопом. Ключевыми экспериментальными соображениями являются чувствительность , разрешение , поле зрения и скорость камеры.Подробное объяснение см. наши статьи по этой тематике.

Пиксель камеры — отдельный блок измерения света в камере, а сенсор камеры имеет массив пикселей для измерения света через поле зрения. Камера может иметь всего 128 × 128 пикселей или столько же 5000 × 3000 (15 миллионов пикселей или 15 мегапикселей) или более. Поскольку микроскоп порты камеры обычно имеют одинаковый приблизительный размер, камеры с большим пикселем массивы обычно имеют отдельные пиксели меньшего размера.

Размер пикселя является ключом к возможности изображения с полной информацией контент, предоставляемый оптикой. Пиксели камеры квадратные и обычно 3-24 мкм. по краю. Вообще говоря, камеры с меньшими пикселями на пикселей позволяют на пикселей выше разрешение изображений, тогда как камеры с большими пикселями имеют большую площадь поверхности для сбора фотонов делая их более чувствительными .

Большинство микроскопов имеют оптические выходные порты диаметром около 18-25 мм.Таким образом, без увеличения (объектив 1x) изображение будет охватывать 18-25 мм образца. Учитывая фиксированный размер изображения, датчики камеры с диагональными размерами, превышающими размер порта камеры микроскопа, будут иметь пиксели, на которые не будет падать свет. Следовательно, важно согласовать поле зрения камеры с максимальным полем зрения микроскопа.

Более крупные пиксели улучшают чувствительность. Косвенно они также имеют преимущество в отношении общего времени, необходимого для передачи информации на компьютер.Общее время считывания зависит от архитектуры камеры, причем CMOS быстрее, чем CCD, а также от общего количества пикселей в камере. В общем, камера с большим, но меньшим количеством пикселей будет готова к следующей экспозиции быстрее, чем камера с большим количеством меньших пикселей.

Освещение

Различные методы микроскопии обнаруживают специфические взаимодействия между светом и образцом. Методы, при которых изображение рассеивается или поглощается светом фокус освещение образца с помощью отдельной осветительной линзы и объектив для визуализации.Линза фокусирующего освещения называется конденсатором и обладает собственными свойствами: рабочее расстояние, NA и т. д.

Флуоресцентная микроскопия

использует отражательную или эпифлуоресцентную геометрию , где объектив служит как конденсатором освещения, так и линзой формирования изображения. Осветительный свет проходит через объектив, а обнаруженный свет проходит обратно через объектив и разделяется на камеру или окуляр. Одним из преимуществ этого подхода является то, что свет, который не взаимодействует с образцом, уходит от детектора, максимально увеличивая разделение света подсветки от флуоресцентного излучения.Пути пропускания и эпифлуоресценции проиллюстрированы на рисунке 4.

Рис. 4: Просвечивающая / трансфлуоресцентная и отражательная / эпифлуоресцентная микроскопия световые пути в модельном микроскопе. Серая область указывает пути света, используемые для каждого режима. Получено из изображения микроскопа на праймере Olympus Microscopy Primer и изменено автором.

Два метода освещения, критический или Кёлер , обычно используются для освещения образца в микроскопии.Основное различие заключается в том, копируют ли они структуру ( критическое значение ) или шифруют структуру ( Köhler ) источника освещения на образце. Освещение по Кёлеру используется чаще, он будет рассмотрен в этой статье.

Келер изобрел систему фокусируемого освещения, которая позволяла контролировать размер поля, мощность и угол освещения, одновременно изменяя структуру источника света, проецируемого на образец. Для этого он воспользовался свойством линзы преобразовывать боковую структуру в параллельные лучи.Помещение источника освещения в фокус линзы преобразует выходной сигнал в однородные световые лучи на другой стороне, скремблируя любую структуру, присущую источнику. Несколько точек, излучаемых источником света, в конечном итоге искажаются и перемещаются в параллельных лучах после выхода из линзы

.

Размещение источника освещения близко к образцу ограничивает контроль силы света и поля зрения освещенности. Келер визуализировал источник света на фокусном расстоянии от конденсорной линзы, как показано на рис.5 . Это обеспечивает управление полем освещения с помощью упора поля , в середине компонента формирования изображения и упора диафрагмы , 1f от конденсора. Ограничение диафрагмы — очень важный аспект дизайна; что позволяет легко контролировать мощность света, подаваемую на образец. Эти упоры обычно имеют рычаги, позволяющие пользователю вручную регулировать область освещения (ограничитель поля) и мощность (ограничитель диафрагмы), подаваемую на образец.

Рис. 5. Осветительная оптика Köhler .Лампа имеет зигзагообразную нить накала на левом корпусе, а образец — справа. Слева направо, свет от лампы отображается в положение 1F от главной плоскости конденсатора. Свет со структурой, попадающий в конденсатор, при доставке к образцу скремблируется. Ограничитель поля обеспечивает контроль освещенной области образца. Ограничитель диафрагмы регулирует диапазон углов и мощность освещения. Световой путь от центральной точки нити накала слева до образца справа выделен оранжевым цветом.Получено на кафедре биомедицинской инженерии Бостонского университета.

Источники света

Существует множество ламп , светодиодов , и лазеров , которые можно использовать для освещения образца в микроскопе. Типичные лампы, используемые для освещения, включают:

  • Галогенная лампа . Они обеспечивают освещение широкого спектра, а их выходная мощность зависит от напряжения на нити накала. Часто используется для передачи изображений.
  • Ксеноновая дуговая лампа . Имеет равномерную мощность на широко используемых длинах волн. В лампе электрическая дуга проходит через две металлические точки в атмосфере ксенона под высоким давлением, создавая плазму около металлических точек. Иногда используется для флуоресцентной визуализации.
  • Ртутно-металлогалогенная дуговая лампа . Имеет в целом большую мощность на широко используемых длинах волн, чем ксеноновые лампы. Также генерирует плазму с помощью электрического разряда между двумя металлическими штырями. Хотя мощность на различных длинах волн может резко меняться, ртутные лампы часто используются для получения изображений флуоресценции.Между использованиями необходимо охлаждаться.

Срок полезного использования каждого из этих источников варьируется от до нескольких сотен часов для ртутных дуговых ламп, до 1000-2000 часы для ртутных / металлогалогенных и галогенных ламп.

Светодиодные источники света достаточно мощны, чтобы конкурировать с ксеноновыми лампами и ртутными / металлогалогенными лампами в качестве источников освещения для получения флуоресцентных изображений. Каждый светодиод имеет уникальный цвет, поэтому широкополосные светодиодные источники получают из массивов нескольких отдельных диодов с относительно узким спектром.Светодиодные источники имеют срок службы более 10 000 часов и обладают высокой энергоэффективностью, что делает их очень экономичными при длительном использовании. Их можно включать и выключать быстро, за наносекунды, что делает их полезными для экспериментов, требующих жесткого контроля освещения. Спектральное распределение примерного светодиодного источника света показано на Рис.6 .

Лазеры излучают свет с очень специфической длиной волны. Например, свет, излучаемый гелий-неоновым (HeNe) лазером и , имеет цвет 632.8 нм. В отличие от других обсуждаемых здесь источников света, лазеры излучают когерентных световых лучей. Когерентность указывает на то, что свет сильно структурирован, и все пики и впадины световой волны происходят в одно и то же время и в одном месте. Когерентность необходима при фокусировке света на точку с ограничением дифракции, но она также усложняет широкопольное освещение из-за его склонности к положительным и отрицательным помехам. Эту самоинтерференцию часто можно обнаружить в виде спекл-структуры в расширенном лазерном луче.

Фильтры

Фильтры — это оптические компоненты, которые могут пропускать одни длины волн света, отражая другие. Выбор цвета имеет решающее значение для флуоресцентной визуализации. Пример оптической фильтрации показан на Рис.7 .

Фильтры обычно называют по характеру передачи и длине волны, с которой они переключаются передача на отражение, как показано на Рис.8 . Короткий проход 500 нм (SP) фильтр будет пропускать свет синее, чем 500 нм, и отражать свет более красным чем 500 нм.Напротив, длиннопроходный канал с длиной волны 500 нм (LP) фильтр будет пропускать свет длиной более 500 нм, отражая свет более короткие длины волн.

Автор объединив свойства фильтров SP и LP, были созданы полосовые (BP) фильтры . Фильтр SP 550 нм в сочетании с фильтром LP 500 нм будет пропускать свет только между 500-550 нм . Фильтры БП обычно описываются их центральной длиной волны и допустимыми длинами волн либо боковая сторона. Гипотетическую комбинацию фильтров SP550, LP500 обычно называют BP 525d25 , BP с центром 525 нм с разрешенной передачей 25 нм в любую сторону (Reichman, 2017).

В флуоресцентном микроскопе комбинация из возбуждающего ВР-фильтра , дихроичного фильтра LP и эмиссионного ВР-фильтра организована в держатель куба, чтобы обеспечить образец возбуждающим светом высокой интенсивности и эффективно изолировать испускаемый свет перед направляя его к камере.

Рисунок 8: Зависимость пропускания от длины волны для различных типов фильтров. В примере LP красный свет будет проходить, а синий свет отражаться.В примере SP синий свет проходит, а красный свет отражается. В примере BP и синий, и красный свет отражаются, а зеленый свет передается. Взято из основных аспектов светофильтров. Молекулярные выражения. Праймер для оптической микроскопии. Https://micro.magnet.fsu.edu/primer/lightandcolor/filtersintro.html.

Сводка

Обсуждаемые здесь части микроскопа работают согласованно, направляя свет на образец и забирая свет от образца и увеличивая его до детектора для сбора.Ограничения диафрагмы, обычно в объективе, ограничивают разрешение микроскопа. Ограничители поля ограничивают освещенную или обнаруженную область. Для получения наилучшего изображения необходимо учитывать такие компоненты, как объективы, источники света, фильтры и камеры.

Список литературы

Abramowitz, M. 2003 Основы микроскопов и не только, Olympus Америка, научный отдел.

Davidson, M.W. Koehler Освещение в Zeiss Basic Веб-сайт ресурсов (https://www.zeiss.com/microscopy/us/solutions/reference/basic-microscopy/koehler-illumination.html)

Парри-Хилл, M.J., Vogt, K.M, Griffin J.D., and Davidson, M.W. Согласование камеры с разрешением микроскопа на веб-сайте MicroscopyU (https://www.microscopyu.com/tutorials/matching-camera-to-microscope-resolution)

Reichman, J. Справочник по оптическим фильтрам для Флуоресцентная микроскопия. Компания Chroma Technology Company Беллоус-Фолс, Вермонт 05101-3119 (https://www.chroma.com/sites/default/files/HandbookofOpticalFilters.pdf)

Спринг, К.Р., Парри-Хилл, М.И Дэвидсон, М. Геометрическое построение лучевых диаграмм в программе Olympus Microscopy Primer веб-сайт (https://www.olympus-lifescience.com/en/microscope-resource/primer/java/components/characteristicrays/)

Спринг, К. Р., Парри-Хилл, М., Бёрдетт, К. А., Саттон, Р. Т., Феллерс, Т. Дж. и Дэвидсон, M.W. Laser Fundamentals на веб-сайте Olympus Microscopy Primer (https://www.olympus-lifescience.com/en/microscope-resource/primer/lightandcolor/laserhome/)

.

Станьте первым комментатором

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *